Skip to main content

Computing Hopf Bifurcations in Chemical Reaction Networks Using Reaction Coordinates

  • Conference paper
Book cover Computer Algebra in Scientific Computing (CASC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7442))

Included in the following conference series:

Abstract

The analysis of dynamic of chemical reaction networks by computing Hopf bifurcation is a method to understand the qualitative behavior of the network due to its relation to the existence of oscillations. For low dimensional reaction systems without additional constraints Hopf bifurcation can be computed by reducing the question of its occurrence to quantifier elimination problems on real closed fields. However deciding its occurrence in high dimensional system has proven to be difficult in practice. In this paper we present a fully algorithmic technique to compute Hopf bifurcation fixed point for reaction systems with linear conservation laws using reaction coordinates instead of concentration coordinates, a technique that extends the range of networks, which can be analyzed in practice, considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  3. Sturm, T., Weber, A., Abdel-Rahman, E., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics in Computer Science 2(3) (2009), Special Issue on Symbolic Computation in Biology

    Google Scholar 

  4. Clarke, B.L.: Stability of Complex Reaction Networks. Advances in Chemical Physics, vol. XLIII. Wiley Online Library (1980)

    Google Scholar 

  5. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shiu, A.J.: Algebraic methods for biochemical reaction network theory. Phd thesis, University of California, Berkeley (2010)

    Google Scholar 

  7. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bulletin of Mathematical Biology, 1–29 (October 2011)

    Google Scholar 

  8. Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network. Biophysical Journal 89(6), 3837–3845 (2005)

    Article  Google Scholar 

  9. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation. Oberwolfach Seminars, vol. 29, pp. 43–73. Birkhäuser, Basel (2000), 10.1007/978-3-0348-8438-9_2

    Google Scholar 

  10. Sturm, T.F., Weber, A.: Investigating Generic Methods to Solve Hopf Bifurcation Problems in Algebraic Biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  MathSciNet  Google Scholar 

  12. Sturm, T.: Redlog online resources for applied quantifier elimination. Acta Academiae Aboensis, Ser. B 67(2), 177–191 (2007)

    Google Scholar 

  13. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1&2), 3–27 (1988)

    Google Scholar 

  14. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)

    Article  Google Scholar 

  17. Reidl, J., Borowski, P., Sensse, A., Starke, J., Zapotocky, M., Eiswirth, M.: Model of calcium oscillations due to negative feedback in olfactory cilia. Biophysical Journal 90(4), 1147–1155 (2006)

    Article  Google Scholar 

  18. Larhlimi, A.: New Concepts and Tools in Constraint-based Analysis of Metabolic Networks. Dissertation, University Berlin, Germany

    Google Scholar 

  19. Dräger, A., Rodriguez, N., Dumousseau, M., Dörr, A., Wrzodek, C., Keller, R., Fröhlich, S., Novère, N.L., Zell, A., Hucka, M.: JSBML: a flexible and entirely Java-based library for working with SBML. Bioinformatics 4 (2011)

    Google Scholar 

  20. Hucka, M., Smith, L., Wilkinson, D., Bergmann, F., Hoops, S., Keating, S., Sahle, S., Schaff, J.: The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. In: Nature Precedings (October 2010)

    Google Scholar 

  21. Domijan, A., Kirkilionis, M.: Bistability and oscillations in chemical reaction networks. Journal of Mathematical Biology 59(4), 467–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comp. 33, 275–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seiler, W.: Involution — The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Errami, H., Seiler, W.M., Eiswirth, M., Weber, A. (2012). Computing Hopf Bifurcations in Chemical Reaction Networks Using Reaction Coordinates. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics