Skip to main content

Object-Oriented Neurofuzzy Modeling and Control of a Binary Distillation Column by Using MODELICA

  • Conference paper
Engineering Applications of Neural Networks (EANN 2012)

Abstract

Neurofuzzy networks offer an alternative approach both for the identification and the control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on hybrid neural networks and fuzzy models is particularly pronounced in this field. MODELICA is an oriented-object environment widely used which allows system-level developers to perform rapid prototyping and testing. Such programming environment offers an intuitive approach to both adaptive modeling and control in a great variety of engineering disciplines. In this paper we have developed an oriented-object model of binary distillation column with nonlinear dynamics, and an ANFIS (Adaptive-Network-based Fuzzy Inference System) neurofuzzy scheme has been applied to derive both an identification model and a adaptive controller to regulate distillation composition. The results obtained demonstrate the effectiveness of the neurofuzzy control scheme when the plant’s dynamics is given by a set of nonlinear differential algebraic equations (DAE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulsari, A.: Neural Networks for Chemical Engineers. Elsevier, Amsterdam (1995)

    Google Scholar 

  2. Hussain, M.A.: Review of the Applications of Neural Networks in Chemical Process Control. Simulation and online Implementations. Artif. Intel. Eng. 13, 55–68 (1999)

    Article  Google Scholar 

  3. Engin, J., Kuvulmaz, J., Omurlu, E.: Fuzzy control of an ANFIS model representing a nonlinear liquid level system. Neural Comput. Appl. 13(3), 202–210 (2004)

    Article  Google Scholar 

  4. Jang, R., Sun, C.: Neuro-fuzzy Modeling and Control. Proceedings of the IEEE 83(3), 378–405 (1995)

    Article  Google Scholar 

  5. Denai, M., Palis, F., Zeghbib, A.: ANFIS Based Modeling and Control of Nonlinear Systems: A Tutorial. In: Proceedings of the IEEE Conference on SMC, pp. 3433–3438 (2004)

    Google Scholar 

  6. Leegwater, H.: Industrial Experience with Double Quality Control. In: Luyben, W.L. (ed.) Practical Distillation Control. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  7. Luyben, P.: Process Modeling, Simulation and Control for Chemical Engineers. Chemical Eng. Series. McGraw Hill (1990)

    Google Scholar 

  8. Skogestad, S.: Dynamics and Control of Distillation Columns. A Critical Survey. In: IFAC Symposium DYCORD 1992, Maryland (1992)

    Google Scholar 

  9. Fruehauf, P., Mahoney, D.: Improve Distillation Control Design. Chem. Eng. Prog. (1994)

    Google Scholar 

  10. Burns, A.: ARTIST Survey of Programming Languages. ARTIST Network of Excellence on Embedded Systems Design (2008)

    Google Scholar 

  11. MATLAB (2010), http://www.mathworks.com/

  12. Mattsson, S.E., Elmquist, H., Otter, M.: Physical System Modelling with Modelica. Control Eng. Pract. 6, 501–510 (1998)

    Article  Google Scholar 

  13. Bruck, D., Elmqvist, H., Olsson, H., Matteson, S.E.: Dymola for Multi-engineering Modelling and Simulation. In: Proceedings of the 2nd Int. Modelica Conference, Germany, pp. 551–558 (2002)

    Google Scholar 

  14. Tiller, M.: Introduction to Physical Modeling with Modelica. Kluwer Ac. Press (2001)

    Google Scholar 

  15. Fritzson, P.: Principles of Object-oriented Modeling and Simulation with Modelica 2.1. Wiley-IEEE Press (2003)

    Google Scholar 

  16. Diehl, M., Uslu, I., Findeisen, R.: Real-time optimization for large scale processes: Nonlinear predictive control of a high purity distillation column. In: On Line Optimization of Large Scale Systems: State of the Art. Springer (2001)

    Google Scholar 

  17. Zauner, G., Leitner, D., Breitenecker, F.: Modeling Structural Dynamic Systems in MODELICA/Dymola, MODELICA/Mosilab and AnyLogic. In: Proceedings of the International Workshop on Equation-Based Oriented Languages and Tool (2007)

    Google Scholar 

  18. Norgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modeling and Control of Dynamic Systems. Springer (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Canete, J.F., Garcia-Cerezo, A., Garcia-Moral, I., del Saz, P., Ochoa, E. (2012). Object-Oriented Neurofuzzy Modeling and Control of a Binary Distillation Column by Using MODELICA. In: Jayne, C., Yue, S., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2012. Communications in Computer and Information Science, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32909-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32909-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32908-1

  • Online ISBN: 978-3-642-32909-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics