Skip to main content

Coloring Graphs Characterized by a Forbidden Subgraph

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

The Coloring problem is to test whether a given graph can be colored with at most k colors for some given k, such that no two adjacent vertices receive the same color. The complexity of this problem on graphs that do not contain some graph H as an induced subgraph is known for each fixed graph H. A natural variant is to forbid a graph H only as a subgraph. We call such graphs strongly H-free and initiate a complexity classification of Coloring for strongly H-free graphs. We show that Coloring is NP-complete for strongly H-free graphs, even for k = 3, when H contains a cycle, has maximum degree at least five, or contains a connected component with two vertices of degree four. We also give three conditions on a forest H of maximum degree at most four and with at most one vertex of degree four in each of its connected components, such that Coloring is NP-complete for strongly H-free graphs even for k = 3. Finally, we classify the computational complexity of Coloring on strongly H-free graphs for all fixed graphs H up to seven vertices. In particular, we show that Coloring is polynomial-time solvable when H is a forest that has at most seven vertices and maximum degree at most four.

The work was supported by EPSRC (EP/G043434/1) and ERC (267959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a forest. J. Comb. Theory, Ser. B 52, 274–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science 414, 9–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 164, 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diestel, R.: Graph Theory, Electronic Edition. Springer (2005)

    Google Scholar 

  6. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the sixth annual ACM Symposium on Theory of Computing (STOC 1974), pp. 47–63 (1974)

    Google Scholar 

  7. Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-Free Graphs When H Is Small. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 289–300. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete Math., Topics on Perfect Graphs 21, 325–356 (1984)

    Article  Google Scholar 

  9. Kamiński, M., Lozin, V.V.: Vertex 3-colorability of claw-free graphs. Algorithmic Operations Research 2, 15–21 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contributions to Discrete Math. 2, 61–66 (2007)

    MATH  Google Scholar 

  11. Král, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Van Le, B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem for triangle-free graphs. Discrete Math. 162, 313–317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs Combin. 20, 1–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovach, P.A., Paulusma, D., Ries, B. (2012). Coloring Graphs Characterized by a Forbidden Subgraph. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics