Skip to main content

Light scattering by large particles: physical optics and the shadow-forming field

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

There are a lot of excellent books and papers considering the theory and various approximations to the problem of light scattering by spherical and nonspherical particles (see, for example, van de Hulst, 1981; Bohren and Huffman, 1983; Kokhanovsky, 1999; Mishchenko et al., 2002; and numerous references therein). These works start from the fundamental Maxwell equations and then the desired solutions are derived from the Maxwell equations as some series. Finally, these series are summarized by a computer code. However, such procedures are effective for relatively small nonspherical particles and the maximum particle size occurs to be strongly dependent on computer power. At present, this particle size limit is reached at, say, under the condition: (particle size)/(incident wavelength) <20. Otherwise such calculations become too computationally expensive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baran, A. J, 2013: Light scattering by irregular particles in the Earth’s atmosphere, this volume.

    Google Scholar 

  • Bi, L., P. Yang, and G. W. Kattawar, 2010: Edge-effect contribution to the extinction of light by dielectric disk and cylindrical particles, Appl, Opt., 49, 4641–4646.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011: Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method, J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508

    Article  Google Scholar 

  • Bi L., and P. Yang, 2013: Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols, this volume.

    Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1983: Absorptin and Scattering of Light by Small Particles, New York: John Wiley & Sons.

    Google Scholar 

  • Born, M., and E. Wolf, 1959: Principles of Optics, Oxford: Pergamon Press.

    Google Scholar 

  • Borovoi, A.G., and I. A. Grishin, 2003: Scattering matrices for large ice crystal particles, JOSA A, 20, 2071–2080

    Article  Google Scholar 

  • Borovoi, A. G., N. V. Kustova, and U. G. Oppel, 2005: Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation, Opt. Engineering, 44, 071208(10).

    Google Scholar 

  • Borovoi, A.G., 2006: Multiple scattering of short waves by uncorrelated and correlated scatterers. In A. A. Kokhanovsky, Light Scattering Reviews, vol. 1, Chichester: Springer-Praxis, 181–252.

    Google Scholar 

  • Cai, Q., and K. N. Liou. 1982: Polarized light scattering by hexagonal ice crystals: theory, Appl. Opt., 21, 3569–3580.

    Article  Google Scholar 

  • Fock, V. A., 1965: Electromagnetic Diffraction and Propagation Problems, Oxford: Pergamon Press.

    Google Scholar 

  • Jackson, J. D., 1999: Classical Electrodynamics, 3rd edn, New York: John Wiley & Sons.

    Google Scholar 

  • Kokhanovsky, A. A., 1999: Light Scattering Media Optics: Problems and Solutions, Chichester: Wiley-Praxis (2nd edn: 2001, 3rd edn: 2004).

    Google Scholar 

  • Landau, L. D., and E. M. Lifshitz, 1991: Quantum Mechanics: Non-relativistic Theory, 3rd edn, Oxford: Pergamon Press.

    Google Scholar 

  • Lock, J. A., and L. Yang, 1991: Interference between diffraction and transmission in the Mie extinction efficiency, JOSA A, 8, 1132–1134.

    Article  Google Scholar 

  • Liou, K. N. 2002: An Introduction to Atmospheric Radiation, San Diego: Academic Press.

    Google Scholar 

  • Liou K. N., Y. Takano, and P. Yang, 2010: On geometric optics and surface waves for light scattering by spheres, J. Quant. Spectrosc. Radiat. Transfer, 111, 1980–1989.

    Article  Google Scholar 

  • Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and δ- function transmission. J. Geophys. Res., 103, 1799–1805.

    Article  Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Muinonen, K., 1989: Scattering of light by crystals: a modified Kirchhoff approximation. Appl. Opt., 28, 3044–3050.

    Article  Google Scholar 

  • Nussenzveig, H. M., 1992: Diffraction Effects in Semiclassical Scattering, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Takano Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part 1. Singlescattering and optical properties of hexagonal ice crystals, J. Atmos. Sci., 46, 3–19.

    Google Scholar 

  • Ufimtsev, P. Ya., 2007: Fundamentals of the Physical Theory of Diffraction, New York, John Wiley & Sons.

    Google Scholar 

  • van de Hulst, H. C., 1981: Light Scattering by Small Particles, New York: Dover.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models, J. Opt. Soc. Am., A12, 162–176.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1996: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals, Appl. Opt., 35(33), 6568–6584.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm, J. Opt. Soc. Am., A14, 2278–2289.

    Article  Google Scholar 

  • Yang, P., and K.N. Liou, 2006: Light scattering and absorption by nonspherical ice crystals.

    Google Scholar 

  • In A. A. Kokhanovsky, Light Scattering Reviews, vol. 1, Chichester: Springer-Praxis, pp. 31–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli G. Borovoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borovoi, A.G. (2013). Light scattering by large particles: physical optics and the shadow-forming field. In: Kokhanovsky, A. (eds) Light Scattering Reviews 8. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32106-1_3

Download citation

Publish with us

Policies and ethics