Skip to main content

Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface

  • Chapter
  • First Online:
Light Scattering Reviews 8

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Airborne aerosol is a suspension of solid particulate matter and/or liquid particles in air, which are often observed as dust, haze and smoke. They present an overall number concentration usually varying between a few hundred per cubic centimeter of air in the remote areas of the planet and more than 104 cm-3 in the most polluted urban areas, with sizes ranging mainly between 0.01 and no more than 100 μm, and therefore varying by more than four orders of magnitude (Heintzenberg, 1994). Aerosol particles are present in the atmosphere as a result of primary emissions or are formed through secondary processes involving both natural and anthropogenic gaseous species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, A. S., O. B. Toon and P. V. Hobbs (1994), Reassessing the dependence of cloud condensation nucleus concentration on formation rate, Nature, 367, 445–447, doi:10.1038/367445a0.

    Article  Google Scholar 

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan and E. J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, doi: 10.1126/science.288.5468.1042.

    Article  Google Scholar 

  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, doi: 10.1038/nature03174.

    Article  Google Scholar 

  • Albrecht, B. (1989), Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, doi: 10.1126/science.245.4923.1227.

    Article  Google Scholar 

  • Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd and E. P. Shettle (1986), AFGL Atmospheric Constituent Profiles (0–120 km), Environ. Res. Papers, No. 954, AFGL-TR-86-0110, Air Force Geophysics Laboratory, L. G. Hanscom Field, Massachusetts, 43 pp.

    Google Scholar 

  • Anderson, T. L., R. J. Charlson, N. Bellouin, O. Boucher, M. Chin, S. A. Christopher, J. Haywood, Y. J. Kaufman, S. Kinne, J. A. Ogren, L. A. Remer, T. Takemura, D. Tanré, O. Torres, C. R. Trepte, B. A. Wielicki, D. M. Winker and H. Yu (2005), An ‘A-Train’ strategy for quantifying direct climate forcing by anthropogenic aerosols, Bull. Amer. Met. Soc., 86, 1795–1809, doi: 10.1175/BAMS-86-12-1795.

    Article  Google Scholar 

  • Andreae, M. O. and A. Gelencsér (2006), Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, doi: 10.5194/acp-6-3131-2006.

    Article  Google Scholar 

  • Ǻngström, A. (1964), The parameters of atmospheric turbidity, Tellus, 16, 1, 64–75.

    Article  Google Scholar 

  • Bates, T. S., T. L. Anderson, T. Baynard, T. Bond, O. Boucher, G. Carmichael, A. Clarke, C. Erlick, H. Guo, L. Horowitz, S. Howell, S. Kulkarni, H. Maring, A. McComiskey, A. Middlebrook, K. Noone, C. D. O’Dowd, J. Ogren, J. Penner, P. K. Quinn, A. R. Ravishankara, D. L. Savoie, S. E. Schwartz, Y. Shinozuka, Y. Tang, R. J. Weber and Y. Wu (2006), Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling, Atmos. Chem. Phys., 6, 1657–1732, doi:10.5194/acp-6-1657-2006.

    Article  Google Scholar 

  • Bellouin, N., O. Boucher, D. Tanré and O. Dubovik (2003), Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations, Geophys. Res. Lett., 30, 1748, doi:10.1029/2003GL017121.

    Article  Google Scholar 

  • Bellouin, N., O. Boucher, J. Haywood and M. S. Reddy (2005), Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138–1140, doi: 10.1038/nature04348.

    Article  Google Scholar 

  • Blanchet, J. P. (1989), Toward estimation of climatic effects due to arctic aerosols, Atmos. Environ., 23, 2609–2625, doi: 10.1016/0004-6981(89)90269-2.

    Article  Google Scholar 

  • Born, M. and E.Wolf (1975), Principles of Optics, Electromagnetic Theory of Propagation, Interference and Direction of Light. Pergamon Press, Oxford, Fifth Edition, 1975.

    Google Scholar 

  • Bothwell, G. W., E. G. Hansen, R. E. Vargo and K. C. Miller (2002), The Multiangle Imaging Spectro-Radiometer science data system, its products, tools, and performance, IEEE Trans. Geosci. Remote Sens., 40, 1467–1476, doi: 10.1109/ TGRS.2002.801152.

    Article  Google Scholar 

  • Burley, J. D. and H. S. Johnston (1992), Ionic mechanisms for heterogeneous stratospheric reactions and ultraviolet photoabsorption cross sections for NO2 +, HNO3, and NO3 in sulphuric acid, Geophys. Res. Lett., 19, 13, 1359–1362, doi: 10.1029/92GL01115.

    Article  Google Scholar 

  • Bush, B. C. and F. P. J. Valero (2002), Spectral aerosol radiative forcing at the surface during the Indian Ocean Experiment (INDOEX), J. Geophys. Res., 107, D19, 8003, doi: 10.1029/2000JD000020.

    Article  Google Scholar 

  • Bush, B. C. and F. P. J. Valero (2003), Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign, J. Geophys. Res., 108, D23, 8660, doi: 10.1029/ 2002JD003233.

    Article  Google Scholar 

  • Carlson, T. N. and S. G. Benjamin (1980), Radiative heating rates for Saharan dust, J. Atmos. Sci., 37, 1, 193–213.

    Article  Google Scholar 

  • Carlson, T. N. and R. S. Caverly (1977), Radiative characteristics of Saharan dust at solar wavelengths, J. Geophys. Res., 82, 21, 3141–3152, doi: 10.1029/JC082i021p03141.

    Article  Google Scholar 

  • Carr, S. B. (2005), The Aerosol Models in MODTRAN: Incorporating Selected Measurements from Northern Australia, Technical Report of the Defence Science and Technology Organisation, No. DSTO-TR-1803, Edinburgh, South Australia (Australia), 67 pp, (see http://www.ewp.rpi.edu/hartford/~brazw/Project/Other/ Research/Soot/Carr2005 AerosolModelsInMODTRAN.pdf).

  • Charlson, R. J., J. Langner and H. Rodhe (1990), Sulphate aerosol and climate, Nature, 348, 22–26, doi:10.1038/348022a0.

    Article  Google Scholar 

  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy and S. G.Warren (1991), Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, 43 B, 152–163, doi: 10.1034/j.1600-0870.1991.00013.x.

    Google Scholar 

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, jr., J. E. Hansen and D. J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423–430, doi: 10.1126/science.255.5043.423.

  • Chin, M., T. Diehl, P. Ginoux and W. Malm (2007), Intercontinental transport of pollution and dust aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501– 5517, doi:10.5194/acp-7-5501-2007.

    Article  Google Scholar 

  • Christopher, S. A. and J. Zhang (2002), Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans, Geophys. Res. Lett., 29, 18, 1859, doi:10.1029/2002GL014803.

    Article  Google Scholar 

  • Christopher, S. A., J. Zhang, Y. J. Kaufman and L. A. Remer (2006), Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloudfree oceans, Geophys. Res. Lett., 33, L15816, doi: 10.1029/2005GL025535.

    Article  Google Scholar 

  • Chung, C. E., V. Ramanathan, D. Kim and I. A. Podgorny (2005), Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations, J. Geophys. Res., 110, D24207, doi:10.1029/2005JD006356.

    Article  Google Scholar 

  • Chylek, P. and J. A. Coakley, jr. (1974), Aerosols and climate, Science, 183, 75–77, doi: 10.1126/science.183.4120.75.

  • Chylek, P. and J. Wong (1995), Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929–931, doi: 10.1029/95GL00800.

    Article  Google Scholar 

  • Coakley, J. A., jr. and P. Chylek (1975), The two-stream approximation in radiative transfer: including the angle of the incident radiation, J. Atmos. Sci., 32, 409–418.

    Google Scholar 

  • Coakley, J. A., jr., R. D. Cess and F. B. Yurevich (1983), The effect of tropospheric aerosols on the Earth’s radiation budget: A parameterization for climate models, J. Atmos. Sci., 40, 116–138.

    Google Scholar 

  • Cook, J., and E. J. Highwood (2004), Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model, Q. J. R. Meteorol. Soc., 130, 596, 175– 191, doi: 10.1256/qj.03.64.

    Article  Google Scholar 

  • Cox, C. and W. Munk (1954), Statistics of the sea surface derived from sun glitter. J. Marine Res., 13, 198–227.

    Google Scholar 

  • d’Almeida, G. A., P. Koepke and E. P. Shettle (Eds.) (1991), Atmospheric Aerosols: Global Climatology and Radiative Characteristics, Hampton, Virginia, A. Deepak Publishing, 561 pp.

    Google Scholar 

  • Deepak, A. and H. E. Gerber (Eds.) (1983), Report of the experts meeting on aerosols and their climatic effects. WCP-55, 107 pp. (Available from World Meteorological Organization, Case Postale No. 5, CH-1211 Geneva, Switzerland).

    Google Scholar 

  • Deirmendjian, D. (1969), Electromagnetic Scattering on Spherical Polydispersions, New York, Elsevier, pp. 75–119.

    Google Scholar 

  • Diner, D. J., J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, J.-P. Muller, R. B. Myneni, P. J. Sellers, B. Pinty and M. M. Verstraete (1998), Multi-angle Imaging Spectro Radiometer (MISR) instrument description and experiment overview, IEEE Trans. Geosci. Remote Sens., 36, 1072–1087, doi: 10.1109/36.700992.

    Article  Google Scholar 

  • Dubin, M., N. Sissenwine and S. Teweles (1966), U. S. Standard Atmosphere Supplements, 1966. Environmental Science Services Administration, National Aeronautics and Space Administration, United States Air Force, Washington, D. C. 20402, 289 pp.

    Google Scholar 

  • Dubovik, O. and M. D. King (2000), A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, D16, 20673–20696, doi: 10.1029/2000JD900282.

    Article  Google Scholar 

  • Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker (2000), Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky radiance measurements, J. Geophys. Res., 105, D8, 9791– 9806, doi: 10.1029/2000JD900040.

    Article  Google Scholar 

  • Ervens, B., G. Feingold and S. M. Kreidenweis (2005), Influence of water-soluble organic carbon on cloud drop number concentration, J. Geophys. Res., 110, D18211, doi:10.1029/2004JD005634.

    Article  Google Scholar 

  • Feichter, J., E. Roeckner, U. Lohmann and B. Liepert (2004), Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing, J. Climate, 17, 2384–2398.

    Article  Google Scholar 

  • Feingold, G. (2003), Modeling of the first indirect effect: Analysis of measurement requirements, Geophys. Res. Lett., 30, 1997, doi:10.1029/2003GL017967.

    Article  Google Scholar 

  • Feingold, G., W. R. Cotton, S. M. Kreidenweis and J. T. Davis (1999), The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties, J. Atmos. Sci., 56, 4100–4117.

    Article  Google Scholar 

  • Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, (2007), Changes in atmospheric constituents and in radiative forcing. Chapter 2 in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA).

    Google Scholar 

  • Gatebe, C. K., O. Dubovik, M. D. King and A. Sinyuk (2010), Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements, Atmos. Chem. Phys., 10, 2777–2794, doi:10.5194/acp-10-2777-2010.

    Article  Google Scholar 

  • Grassl, H. (1973), Aerosol influence on radiative cooling, Tellus, 25, 4, 386–395.

    Article  Google Scholar 

  • Grassl, H. and M. Newiger (1982), Changes of local planetary albedo by aerosol particles, Sci. Total Environ., 23, 313–320, doi: 10.1016/0048-9697(82)90148-6.

    Article  Google Scholar 

  • Grenfell, T. C. and G. A. Maycut (1977), The optical properties of ice and snow in the Arctic Basin, J. Glaciol., 18, 78, 445–463.

    Google Scholar 

  • Hale, G. M. and M. R. Querry (1973), Optical constants of water in the 200 nm to 200 μm wavelength region, Appl. Opt., 12, 555–563, doi: 10.1364/AO.12.000555.

    Article  Google Scholar 

  • Hänel, G. (1968), The real part of the mean complex refractive index and the mean density of samples of atmospheric aerosol particles, Tellus, 20, 371–379, doi: 10.1111/j.2153- 3490.1968.tb00378.x.

    Article  Google Scholar 

  • Hänel, G. (1972), Computation of the extinction of visible radiation by atmospheric aerosol particles as a function of the relative humidity, based upon measured properties, J. Aerosol Sci., 3, 377–386, doi:10.1016/0021-8502(72)90092-4.

    Article  Google Scholar 

  • Hänel, G. (1976), The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73–88.

    Article  Google Scholar 

  • Hänel, G. and K. Bullrich (1978), Physico-chemical property models of tropospheric aerosol particles, Contr. Atmos. Phys., 51, 129–138.

    Google Scholar 

  • Hänel, G. and B. Zankl (1979), Aerosol size and relative humidity: Water uptake by mixtures of salts, Tellus, 31 B, 478–486, doi: 10.1111/j.2153-3490.1979.tb00929.x.

    Google Scholar 

  • Hänel, G., W. Adam, U. Bundke, L. Komguem and U. Leiterer (1999), Optical properties of boundary layer particles, columnar absorption and direct radiative forcing by particles in the solar spectral region, J. Aerosol Sci., 30, Suppl. 1, S171–S172.

    Article  Google Scholar 

  • Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102, D6, 6831–6864, doi:10.1029/96JD03436.

    Article  Google Scholar 

  • Hansen, J. E., M. Sato, A. Lacis, R. Ruedy, I. Tegen and E. Matthews (1998), Climate forcings in the industrial era, Proc. Natl. Acad. Sci. USA, 95, 12,753–12,758.

    Google Scholar 

  • Hapke, B. (1986), Bidirectional reflectance spectroscopy. IV. The extinction coefficient and the opposition effect, Icarus, 67, 264–280, doi:10.1016/0019-1035(86)90108-9.

    Article  Google Scholar 

  • Haywood, J. M., V. Ramaswamy and B. J. Soden (1999), Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans, Science, 283, 1299–1303.

    Article  Google Scholar 

  • Haywood, J. and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543, doi: 10.1029/1999RG000078.

    Article  Google Scholar 

  • Heintzenberg, J. (1994), The life cycle of the atmospheric aerosol. In Topics in Atmospheric and Interstellar Physics and Chemistry (F. Boutron, Ed.), Les Editions de Physique, Sciences, Les Ulis, France ERCA, Vol. 1, Chapter XII, pp. 251–270.

    Google Scholar 

  • Hess, M., P. Koepke and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Met. Soc., 79, 5, 831–844.

    Article  Google Scholar 

  • Hignett, P., J. P. Taylor, P. N. Francis and M. D. Glew (1999), Comparison of observed and modeled direct aerosol forcing during TARFOX, J. Geophys. Res., 104, D2, 2279– 2287, doi: 10.1029/98JD02021.

    Article  Google Scholar 

  • Hofmann, D. J. and J. M. Rosen (1983a), Stratospheric sulphuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chich´on, Geophys. Res. Lett., 10, 313– 316, doi:10.1029/GL010i004p00313.

    Article  Google Scholar 

  • Hofmann, D. J. and J. M. Rosen (1983b), Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon, Science, 222, 325–327, doi: 10.1126/science.222.4621.325.

    Article  Google Scholar 

  • Holben, B. N., T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak and A. Smirnov (1998), AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, doi: S0034-4257(98)00031-5.

    Google Scholar 

  • Hummel, J. R., E. P. Shettle and D. R. Longtin (1988), A new background stratospheric aerosol model for use in atmospheric radiation models, Scientific Report No. 8, AFGL-TR-88-0166, Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts, 01731–5000, 30 July 1988.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (1996), Climate Change 1995, The Science of Climate Change [Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)], Cambridge University Press, Cambridge (United Kingdom), 572 pp.

    Google Scholar 

  • IPCC TAR (2001), Third Assessment Report, Climate Change 2001, Working Group I: The Scientific Basis [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)], Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA), 881 pp.

    Google Scholar 

  • Iqbal, M. (1983), An Introduction to Solar Radiation, Academic Press, Toronto, pp. 1–58.

    Google Scholar 

  • Irvine, W. M. and J. B. Pollack (1968), Infrared optical properties of water and ice spheres, Icarus, 8, 342–360, doi: 10.1016/0019-1035(68)90083-3.

    Article  Google Scholar 

  • Jacobson, M. Z. (2002), Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107, D19, 4410, doi:10.1029/2001JD001376.

    Article  Google Scholar 

  • Jacquemoud, S. and F. Baret (1990), PROSPECT: A model of leaf optical properties spectra, Remote Sens. Environ., 34, 75–91, doi: 10.1016/0034-4257(90)90100-Z.

    Google Scholar 

  • Jiang, H., H. Xue, A. Teller, G. Feingold and Z. Levin (2006), Aerosol effects on the lifetime of shallow cumulus, Geophys. Res. Lett., 33, L14806, doi: 10.1029/2006GL026024..

    Article  Google Scholar 

  • Johnson, B. T., K. P. Shine, and P. M. Forster (2004), The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. R. Meteorol. Soc., 130, 1407–1422, doi: 10.1256/qj.03.61.

    Article  Google Scholar 

  • Jupp, D. L. B. (2000), A compendium of kernel and other (semi-)empirical BDRF models. CSIRO, Office of the Space Science Applications, Earth Observation Centre, pp. 18, available on http://www.cossa.csiro.au/tasks/brdf/k summ.pdf.

  • Kasten, F. and A. T. Young (1989), Revised optical air mass tables and approximation formula, Appl. Opt., 28, 4735–4738, doi: 10.1364/AO.28.004735.

    Article  Google Scholar 

  • Kaufman, Y. J. (1987), Satellite sensing of aerosol absorption, J. Geophys. Res., 92, D4, 4307–4317, doi: 10.1029/JD092iD04p04307.

    Article  Google Scholar 

  • Kaufman, Y. J., and R. S. Fraser (1997), The effect of smoke particles on clouds and climate forcing, Science, 277, 1636–1639, doi: 10.1126/science.277.5332.1636.

    Article  Google Scholar 

  • Kaufman, Y. J., D. Tanré and O. Boucher (2002a), A satellite view of aerosols in the climate system, Nature, 419, 6903, 215–223, doi:10.1038/nature01091.

    Article  Google Scholar 

  • Kaufman, Y. J. and I. Koren (2006), Smoke and pollution aerosol effect on cloud cover, Science, 313, 5787, 655–658, doi: 10.1126/science.1126232.

    Article  Google Scholar 

  • Kiehl, J. T. and B. P. Briegleb (1993), The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260, 5106, 311–314, doi: 10.1126/science. 260.5106.311.

    Article  Google Scholar 

  • Kimes, D., W. W. Newcomb, C. J. Tucker, I. S. Zonneveld, W. Van Wijngaarden, J. De Leeuw and G. F. Epema (1985), Directional reflectance factor distributions for cover types of Northern Africa, Remote Sens. Environ., 18, 1–19, doi: 10.1016/0034- 4257(85)90034-3.

    Google Scholar 

  • King, M., D. Harshvardhan and A. Arking (1984), A model of the radiative properties of the El Chichon stratospheric aerosol layer, J. Clim. Appl. Meteor., 23, 7, 1121–1137.

    Article  Google Scholar 

  • King, M. D., Y. J. Kaufman, D. Tanré and T. Nakajima (1999), Remote sensing of tropospheric aerosols from space: past, present and future, Bull. Amer. Met. Soc., 80, 11, 2229–2259.

    Article  Google Scholar 

  • Kneizys, F. X., L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery and S. A. Clough (1996), The MODTRAN 2/3 Report and LOWTRAN 7 model [Abreu, L. W., and G. P. Anderson (eds.)], Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, Massachusetts, 261 pp.

    Google Scholar 

  • Koepke, P. (1984), Effective reflectance of oceanic whitecaps, Appl. Opt., 23, 1816–1824.

    Article  Google Scholar 

  • Koepke, P., M. Hess, I. Schult and E. P. Shettle (1997), Global Aerosol Data Set. MPI Meteorologie Hamburg Report No. 243, 44 pp.

    Google Scholar 

  • Kokhanovsky, A. A. (2004), Spectral reflectance of whitecaps, J. Geophys. Res., 109, C05021, doi:10.1029/2003JC002177.

    Article  Google Scholar 

  • Kokhanovsky, A. A., and F.-M. Breon (2012), Validation of an analytical snow BRDF model using PARASOL multi-angular and multispectral observations, IEEE Geosci. Rem. Sens. Letters, 9, 928–932, doi: 10.1109/LGRS.2012.2185775.

    Article  Google Scholar 

  • Kopp, G. and J. L. Lean (2011), A new, lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 38, L01706, doi: 10.10129/2010GL045777.

    Google Scholar 

  • Koren, I., J. V. Martins, L. A. Remer and H. Afargan (2008), Smoke invigoration versus inhibition of clouds over the Amazon, Science, 321, 5891, doi: 10.1126/science.1159185.

    Article  Google Scholar 

  • Kriebel, K. T. (1978), Measured spectral bidirectional reflection properties of four vegetated surfaces, Appl. Opt., 17, 253–259, doi: 10.1364/AO.17.000253.

    Article  Google Scholar 

  • Krüger, O. and H. Grassl (2002), The indirect aerosol effect over Europe, Geophys. Res. Lett., 29, 1925, doi: 10.1029/2001GL014081.

    Article  Google Scholar 

  • Kuusk, A. (1994), A multispectral canopy reflectance model, Remote Sens. Environ., 50, 75–82, doi: 10.1016/0034-4257(94)90035-3.

    Google Scholar 

  • Lewis, P. (1995), On the implementation of linear kernel-driven BRDF models, Proc. Ann. Conf. of Remote Sensing Society ‘95, ‘Remote Sensing in Action’, Southampton, UK, 11–14 Sept., 1995, 333–340.

    Google Scholar 

  • Lewis, P. and M. J. Barnsley (1994), Influence of the sky radiance distribution on various formulations of the Earth surface albedo, Proc. Sixth Internat. Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isere (France), January 17–21, 1994, pp. 707–715.

    Google Scholar 

  • Loeb, N. G. and N. Manalo-Smith (2005), Top-of-Atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Climate, 18, 17, 3506–3526, doi: 10.1175/JCLI3504.1.

    Article  Google Scholar 

  • Lohmann, U. and J. Feichter (2005), Global indirect aerosol effects: A review, Atmos. Chem. Phys., 5, 715–737, doi:10.5194/acp-5-715-2005.

    Article  Google Scholar 

  • Lubin, D., S. K. Satheesh, G. McFarquar and A. J. Heymsfield (2002), Longwave radi ative forcing of Indian Ocean tropospheric aerosol, J. Geophys. Res., 107, D19, 8004, doi: 10.1029/2001JD001183.

    Article  Google Scholar 

  • Lucht, W., C. B. Schaaf and A. H. Strahler (2000), An algorithm for the retrieval of albedo from space using semiempirical BRDF models, IEEE Trans. Geosci., Remote Sens., 38, 2, Part 2, 977–998, doi: 10.1109/36.841980.

    Google Scholar 

  • Marsden, D. and F. P. J. Valero (2004), Observation of water vapor greenhouse absorption over the Gulf of Mexico using aircraft and satellite data, J. Atmos. Sci., 61, 745–753.

    Article  Google Scholar 

  • Menon, S., J.-L. Brenguier, O. Boucher, P. Davison, A. D. Del Genio, J. Feichter, S. Ghan, S. Guibert, X. Liu, U. Lohmann, H. Pawlowska, J. E. Penner, J. Quaas, D. L. Roberts, L. Schüller, and J. Snider (2003), Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations, J. Geophys. Res., 108, D24, 4762, doi:10.1029/2003JD003902.

    Article  Google Scholar 

  • McClatchey, R. A., H. J. Bolle and K. Ya. Kondratyev (1980), Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere. WMO/IAMAP, 33 pp (available from AFGL, Hanscom Air Force Base, MA 01731).

    Google Scholar 

  • McCormick, R. A. and J. H. Ludwig (1967), Climate modification by atmospheric aerosols, Science, 156, 3780, 1358–1359, doi: 10.1126/science.156.3780.1358.

    Article  Google Scholar 

  • Mie, G. (1908), Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, Vierte Folge, 25, 3, 377–445.

    Google Scholar 

  • Morel, A. (1988), Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters), J. Geophys. Res., 93, C9, 10749–10768, doi: 10.1029/ JC093iC09p10749.

    Article  Google Scholar 

  • Nakajima, T., G. Tonna, R. Rao, P. Boi, Y. Kaufman and B. Holben (1996), Use of sky brightness measurements from ground for remote sensing of particulate polydispersions, Appl. Opt., 35, 2672–2686, doi: 10.1364/AO.35.002672.

    Article  Google Scholar 

  • Nakajima, T., M. Sekiguchi, T. Takemura, I. Uno, A. Higurashi, D. Kim, B. J. Sohn, S.-N. Oh, T. Y. Nakajima, S. Ohta, I. Okada, T. Takemura and K Kawamoto (2003), Significance of direct and indirect radiative forcings of aerosols in the East China Sea region, J. Geophys. Res., 108, D23, 8658, doi:10.1029/2002JD003261.

    Article  Google Scholar 

  • Nicodemus, F. E., J. C. Richmond, J. J. Hsia, I. W. Ginsberg and T. Limperis (1977), Geometrical considerations and nomenclature for reflectance, Natl. Bur. Stand. Rep., NBS MN-160, 52 pp.

    Google Scholar 

  • Nilson, T. and A. Kuusk (1989), A reflectance model for the homogeneous plant canopy and its inversion, Remote Sens. Environ., 27, 157–167, doi: 10.1016/0034- 4257(89)90015-1.

    Google Scholar 

  • Palmer, K. F. and D. Williams (1975), Optical constants of sulphuric acid; application to the clouds of Venus?, Appl. Opt., 14, 208–219, doi: 10.1364/AO.14.000208.

    Google Scholar 

  • Patterson, E. M. (1977), Atmospheric extinction between 0.55 μm and 10.6 μm due to soil-derived aerosols, Appl. Opt., 16, 2414–2418, doi: 10.1364/AO.16.002414.

    Article  Google Scholar 

  • Patterson, E. M. (1981), Optical properties of the crustal aerosol: Relation to chemical and physical characteristics, J. Geophys. Res., 86, C4, 3236–3246, doi: 10.1029/JC086iC04p03236.

    Article  Google Scholar 

  • Patterson, E. M., D. A. Gillette and B. H. Stockton (1977), Complex index of refraction between 300 and 700 nm for Saharan aerosols, J. Geophys. Res., 82, 21, 3153–3160, doi: 10.1029/JC082i021p03153.

    Article  Google Scholar 

  • Penner, J. E., M. Andreae, H. Annergarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, and G. Pitari (2001), Aerosols, their direct and indirect effects. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)], Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA), pp. 289–348.

    Google Scholar 

  • Price, J. C. (1990), On the information content of soil reflectance spectra. Remote Sens. Environ., 33, 113–121, doi: 10.1016/0034-4257(90)90037-M.

    Article  Google Scholar 

  • Pueschel, R. F., K. G. Snetsinger, J. K. Goodman, O. B. Toon, G. V. Ferry, V. R. Oberbeck, J. M. Livingston, S. Verma, W. Fong, W. L. Starr and K. R. Chan (1989), Condensed nitrate, sulfate, and chloride in Antarctic stratospheric aerosols, J. Geophys. Res., 94, D9, 11271–11284, doi: 10.1029/JD094iD09p11271.

    Article  Google Scholar 

  • Pueschel, R. F., S. A. Kinne, P. B. Russell, K. G. Snetsinger and J. M. Livingston (1993), Effects of the 1991 Pinatubo volcanic eruption on the physical and radiative properties of stratospheric aerosols. In IRS ’92: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium [Keevallik, S., and O. Kärner (eds.)], Tallinn (Estonia), 2–8 August 1992, A. Deepak Publishing, Hampton, Virginia (USA), pp. 183–186.

    Google Scholar 

  • Quaas, J., O. Boucher, N. Bellouin and S. Kinne (2008), Satellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.

    Article  Google Scholar 

  • Rahman, H., B. Pinty and M. M. Verstraete (1993), Coupled surface–atmosphere reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, D11, 20791–20801, doi: 10.1029/93JD02072.

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl and D. Rosenfeld (2001a), Aerosols, climate and the hydrological cycle, Science, 294, 5549, 2119–2124, doi: 10.1126/science. 1064034.

    Article  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. Lelieveld, A. P. Mitra, D. Althausen, J. Anderson, M. O. Andreae, W. Cantrell, G. R. Cass, C. E. Chung, A. D. Clarke, J. A. Coakley, W. D. Collins, W. C. Conant, F. Dulac, J. Heintzenberg, A. J. Heymsfield, B. Holben, S. Howell, J. Hudson, A. Jayaraman, J. T. Kiehl, T. N. Krishnamurti, D. Lubin, G. McFarquhar, T. Novakov, J. A. Ogren, I. A. Podgorny, K. Prather, K. Priestley, J. M. Prospero, P. K. Quinn, K. Rajeev, P. Rasch, S. Rupert, R. Sadourny, S. K. Satheesh, G. E. Shaw, P. Sheridan and F. P. J. Valero (2001b), Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, D22, 28371–28398, doi: 10.1029/2001JD900133.

    Article  Google Scholar 

  • Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T, Nakajima, G. Y. Shi, and S. Solomon (2001), Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)], Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA), pp. 349–416.

    Google Scholar 

  • Remer, L. A. and Y. J. Kaufman (2006), Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data, Atmos. Chem. Phys., 6, 1, 237–253, doi:10.5194/acp-6-237-2006.

    Article  Google Scholar 

  • Ricchiazzi, P., S. Yang, C. Gautier and D. Sowle (1998), SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere, Bull. Am. Met. Soc., 79, 10, 2101–2114.

    Article  Google Scholar 

  • Ricchiazzi, P., W. O’Hirok and C. Gautier (2005), The effect of non-lambertian surface reflectance on aerosol radiative forcing, Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14–18, 2005, 8 pp.

    Google Scholar 

  • Román, M. O., C. B. Schaaf, P. Lewis, F. Gao, G. P. Anderson, J. L. Privette, A. H. Strahler, C. E. Woodcock and M. Barnsley (2010), Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes, Remote Sens. Environ., 114, 4, 738–760, doi: 10.1016/j.rse.2009.11.014.

    Google Scholar 

  • Russell, P. B., S. A. Kinne and R. W. Bergstrom (1997), Aerosol climate effects: Local radiative forcing and column closure experiments, J. Geophys. Res., 102, D8, 9397– 9407, doi: 10.1029/97JD00112.

    Article  Google Scholar 

  • Russell, P. B., J. M. Livingston, P. Hignett, S. Kinne, J.Wong, A. Chien, R. Bergstrom, P. Durkee and P. V. Hobbs (1999), Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer, J. Geophys. Res., 104, D2, 2289–2307, doi: 10.1029/1998JD200025.

    Article  Google Scholar 

  • Satheesh, S. K. and V. Ramanathan (2000), Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface, Nature, 405, 6782, 60–63, doi: 10.1038/35011039.

    Article  Google Scholar 

  • Schwartz, S. E. and M. O. Andreae (1996), Uncertainty in climate change caused by aerosols, Science, 272, 5265, 1121–1122, doi: 10.1126/science.272.5265.1121.

    Article  Google Scholar 

  • Schwartz, S. E., F. Arnold, J.-P. Blanchet, P. A. Durkee, D. J. Hofmann,W. A. Hoppel, M. D. King, A. A. Lacis, T. Nakajima, J. A. Ogren, O. B. Toon and M. Wendisch (1995), Group report: Connections between aerosol properties and forcing of climate. In Aerosol Forcing of Climate (R. J. Charlson and J. Heintzenberg, Eds), John Wiley & Sons, New York, pp. 251–280.

    Google Scholar 

  • Seinfeld, J. H. and S. N. Pandis (2006), Atmospheric Chemistry and Physics, from Air Pollution to Climate Change (Second Edition), John Wiley & Sons, New York (USA), 1225 pp.

    Google Scholar 

  • Shettle, E. P. (1984), Optical and radiative properties of a desert aerosol model. In IRS ’84: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium [Fiocco, G. (ed.)], Perugia, Italy, 21–28 August 1984, A. Deepak Publishing, Hampton, Virginia, USA, 74–77.

    Google Scholar 

  • Shettle, E. P. and R. W. Fenn (1979), Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, Environ. Res. Papers, No. 676, Air Force Geophys. Lab., AFGL-Techn. Rep. 79–0214, Hanscom AFB, MA, 94 pp.

    Google Scholar 

  • Sobolev, V. V. (1975), Light Scattering in Planetary Atmospheres, New York, Pergamon Press, 256 pp.

    Google Scholar 

  • Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl and B. D. Santer (2006), Observational constraints on past attributable warming and predictions of future global warming, J. Climate, 19, 3055–3069.

    Article  Google Scholar 

  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben and S. Kinne (2002), Singlescattering albedo and radiative forcing of various aerosol species with a global threedimensional model, J. Climate, 15, 333–352.

    Article  Google Scholar 

  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima and T. Nakajima (2005), Simulation of climate response to aerosol direct and indirect effects with aerosol transportradiation model, J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    Article  Google Scholar 

  • Tanré, D., J. Haywood, J. Pelon, J. F. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. J. Highwood and G. Myhre (2003), Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE), J. Geophys. Res., 108, D18, 8574, doi:10.1029/2002JD003273.

    Article  Google Scholar 

  • Tomasi, C., F. Prodi and F. Tampieri (1979), Atmospheric turbidity variations caused by layers of Sahara dust particles, Beitr. Phys. Atmos., 52, 3, 215–228.

    Google Scholar 

  • Tomasi, C., V. Vitale and L. Tarozzi (1997), Sun-photometric measurements of atmospheric turbidity variations caused by the Pinatubo aerosol cloud in the Himalayan region during the summer periods of 1991 and 1992, Il Nuovo Cimento, 20 C, 61–88.

    Google Scholar 

  • Tomasi, C., V. Vitale and L. V. De Santis (1998), Relative optical mass functions for air, water vapor, ozone and nitrogen dioxide in atmospheric models presenting different latitudinal and seasonal conditions, Meteorol. Atmos. Phys., 65, 11–30, doi: 10.1007/BF01030266.

    Article  Google Scholar 

  • Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G. H. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V. Cachorro, P. Ortiz, A. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res., 112, D16205, doi:10.1029/2007JD008432.

    Article  Google Scholar 

  • Tomasi, C., A. Lupi, M. Mazzola, R. S. Stone, E. G. Dutton, A. Herber, V. F. Radionov, B. N. Holben, M. G. Sorokin, S. M. Sakerin, S. A. Terpugova, P. S. Sobolewski, C. Lanconelli, B. H. Petkov, M. Busetto and V. Vitale (2012), An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year, Atmos. Environ., 52, 29–47, doi:10.1016/j.atmosenv.2012.02.055.

    Article  Google Scholar 

  • Turco, R. P., R. C.Whitten and O. B. Toon (1982), Stratospheric aerosols: observation and theory, Rev. Geophys. Space Phys., 20, 2, 233–279, doi: 10.1029/RG020i002p00233.

    Article  Google Scholar 

  • Twitty, J. T. and J. A. Weinman (1971), Radiative properties of carbonaceous aerosols, J. Appl. Meteorol., 10, 4, 725–731.

    Article  Google Scholar 

  • Twomey, S. A. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 7, 1149–1152.

    Article  Google Scholar 

  • Valero, F. P. J. and P. Pilewskie (1992), Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud-derived particle sizes, columnar mass loadings, and effects on planetary albedo, Gephys. Res. Lett., 19, 2, 163–166, doi: 10.1029/92GL00074.

    Article  Google Scholar 

  • Valero, F. P. J. and B. C. Bush (1999), Measured and calculated clear-sky solar radiative fluxes during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS), J. Geophys. Res., 104, D22, 27387–27398, doi: 10.1029/1999JD900947.

    Article  Google Scholar 

  • Vermote, E. F., D. Tanré, J. L. Deuzé, M. Herman and J.-J. Morcrette (1997a), Second simulation of the satellite signal in the solar spectrum (6S): An overview, IEEE Trans. Geosci. Remote Sens., 35, 3, 675–686, doi: 10.1109/36.581987.

    Article  Google Scholar 

  • Vermote, E. F., D. Tanré, J. L. Deuzé, M. Herman and J. J. Morcrette (1997b), Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Version 2, July 1997. Universit`e de Lille, France, 218 pp.

    Google Scholar 

  • Volz, F. E. (1972a), Infrared absorption by atmospheric aerosol substances, J. Geophys. Res., 77, 6, 1017–1031, doi: 10.1029/JC077i006p01017.

    Article  Google Scholar 

  • Volz, F. E. (1972b), Infrared refractive index of atmospheric aerosol substances, Appl. Opt., 11, 4, 755–759, doi: 10.1364/AO.11.000755.

    Google Scholar 

  • Volz, F. E. (1973), Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash, Appl. Opt., 12, 3, 564–568, doi: 10.1364/AO.12.000564.

    Google Scholar 

  • Vonder Haar, T. H. and V. E. Suomi (1971), Measurements of the Earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means, J. Atmos. Sci., 28, 305–314, doi:10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2.

  • Waliser, D. E. and N. E. Graham (1993), Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation, J. Geophys. Res., 98, D7, 12,881–12,893, doi: 10.1029/93JD00872.

  • Wanner,W., A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. L. B. Schaaf and M. J. Barnsley (1997), Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm, J. Geophys. Res., 102, D14, 17,143–17,161, doi: 10.1029/96JD03295.

  • Warren, S. G. (1984), Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 1206–1225, doi: 10.1364/AO.23.001206.

    Article  Google Scholar 

  • Warren, S. G. and W. J. Wiscombe (1980), A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 12, 2734–2745.

    Google Scholar 

  • Wiscombe, W. J. and G. W. Grams (1976), The backscattered fraction in two-stream approximations, J. Atmos. Sci., 33, 12, 2440–2451.

    Article  Google Scholar 

  • Wiscombe, W. J. and S. G.. Warren (1980), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 12, 2712–2733.

    Google Scholar 

  • WMO (1983), World Meteorological Organization (WMO/CAS)/Radiation Commission of IAMAP Meeting of experts on aerosols and their climatic effects,WCP 55, Williamsburg, Virginia, U.S.A., March 28–30, 1983.

    Google Scholar 

  • WMO (1986), Atmospheric Ozone 1985. WMO Global Ozone Research and MonitoringProject, Report No. 16, Geneva (Switzerland).

    Google Scholar 

  • Yu, H., S. C. Liu and R. E. Dickinson (2002), Radiative effects of aerosols on the evolution of the atmospheric boundary layer, J. Geophys. Res., 107, 4142, doi:10.1029/2001JD000754.

    Article  Google Scholar 

  • Yu, H., R. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik and B. Holben (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi:10.1029/2003JD003914.

    Article  Google Scholar 

  • Zdunkowski, W. G., R. M. Welch, and G. Korb (1980), An investigation of the structure of typical two-stream-methods for the calculation of solar fluxes and heating rates in clouds, Beitr. Phys. Atmos., 53, 147–166.

    Google Scholar 

  • Zhang, J. and S. A. Christopher (2003), Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra., Geophys. Res. Lett., 30, 2188, doi:10.1029/2003GL018479.

  • Zhao, T. X.-P., H. Yu, I. Laszlo, M. Chin and W. C. Conant (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spectrosc. Rad. Transfer, 109, 7, 1162–1186, doi: 10.1016/j.jqsrt.2007.10.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Tomasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tomasi, C., Lanconelli, C., Lupi, A., Mazzola, M. (2013). Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface. In: Kokhanovsky, A. (eds) Light Scattering Reviews 8. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32106-1_11

Download citation

Publish with us

Policies and ethics