Skip to main content

Light scattering by irregular particles in the Earth’s atmosphere

  • Chapter
  • First Online:
Light Scattering Reviews 8

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

On planet Earth, we are fortunate to have an atmosphere, which sustains life, along with the radiation radiated from our nearest star, the Sun. The interaction between radiation emitted by the Sun and the Earth’s atmosphere, not only helps to sustain life, but also gives rise to the observed display of colours in the Earth’s atmosphere. The interaction between electromagnetic radiation emitted by the Sun and the Earth’s atmosphere is responsible for the depth of blue in the sky. The red sky at sunset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asano, S., and M. Sato, 1980, Light scattering by randomly oriented spheroidal particles, Appl. Opt., 19, 962–974.

    Article  Google Scholar 

  • Asano, S., 1983, Light scattering by horizontally oriented spheroidal particles, Appl. Opt., 22, 1390–1396.

    Article  Google Scholar 

  • Baker, B. B., and R. P., Lawson., 2006, In-situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds, J. Atmos. Sci., 63, 3160–3185.

    Google Scholar 

  • Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007, Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmospheric Chemistry and Physics, 7, 81–95.

    Article  Google Scholar 

  • Baran, A. J., J.-F., Gayet, and V. Shcherbakov, 2012, On the interpretation of an unusual in situ measured ice crystal scattering phase function, Atmos. Chem. Phys. Discuss., 12, 12485–12502, doi:10.5194/acpd-12-12485-2012.

    Google Scholar 

  • Baran, A. J., 2012a, From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 5–69.

    Article  Google Scholar 

  • Baran, A. J., 2012b, A new application of a multi-frequency submillimetre radiometer in determining the microphysical and macrophysical properties of volcanic plumes: A sensitivity study, J. Geophys. Res., 117, D00U18, doi:10.1029/2011JD016781

    Google Scholar 

  • Baran, A. J., P. J. Connolly, A. J. Heymsfield, A. Bansemer, 2011a, Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals, Q. J. R. Meteorol. Soc., 137, 199–218.

    Article  Google Scholar 

  • Baran, A. J, A. Bodas-Salcedo, R. Cotton, and C. Lee, 2011b, Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met office global numerical weather prediction model, Q. J. R. Meteor. Soc., 137, 1547–1560.

    Article  Google Scholar 

  • Baran, A. J., J. Manners, and P. R. Field, 2010, 13th Conference on Atmospheric Radiation, Portland, Oregon, 28th June–2nd July, 2010.

    Google Scholar 

  • Baran, A. J., 2009, A review of the light scattering properties of cirrus, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1239–1260.

    Article  Google Scholar 

  • Baran, A. J., P. J. Connolly, and C. Lee, 2009, Testing an ensemble model of cirrus ice crystals using mid-latitude in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1579–1598.

    Article  Google Scholar 

  • Baran, A. J., and L.-C. Labonnote, 2007, A self-consistent scattering model for cirrus. 1: The solar region, Q. J. R. Meteor. Soc., 133, 1899–18912.

    Article  Google Scholar 

  • Baran, A. J., and L.-C. Labonnote, 2006, On the reflection and polarization properties of ice cloud, Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 41–54.

    Article  Google Scholar 

  • Baran, A. J., 2005, The dependence of cirrus infrared radiative properties on ice crystal geometry and shape of the size-distribution function, Q. J. R. Meteor. Soc., 131, 1129–1142.

    Article  Google Scholar 

  • Baran, A., and P. N. Francis, 2004, On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements, Q. J. R. Meteor. Soc., 130, 763–778.

    Article  Google Scholar 

  • Baran, A. J., 2003, Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders, Applied Optics, 42, 2811–2818.

    Article  Google Scholar 

  • Baran, A. J., P. Yang, and S. Havemann, 2001a, Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T-matrix and the finite-difference time-domain methods, Applied Optics, 40, 4376–4386.

    Article  Google Scholar 

  • Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriaux-Boucher, 2001b, A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multiwavelength radiance measurements of cirrus, Q. J. R. Meteor. Soc., 127, 2395–2416.

    Google Scholar 

  • Baran, A. J., and J. Foot, 1994, New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption, J. Geophys. Res. 99, doi: 10.1029/94JD02044.

    Google Scholar 

  • Baker, B. A., and R. P. Lawson, 2006, In-situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part I. Wave clouds, J. Atmos. Sci., 63, 3160–3185.

    Article  Google Scholar 

  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X Hu, and Z. Zhang, 2011, Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds, J. Appl. Meteor. Climatol., 50, 1037–1056.

    Article  Google Scholar 

  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005, Bulk scattering properties for the remote sensing of ice clouds. Part I. Microphysical data and models. J. Appl. Meteor., 44, 1885–1895.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, Y. X. Hu, and B. A. Baum, 2011, Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1492–1508.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, R, 2010, Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra, Applied Optics, 49, 334–342.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2009, Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometricoptics regimes, Applied Optics, 48, 114–126.

    Article  Google Scholar 

  • Bluth, G. S., S. D. Doiton, C. C. Schnetzler, A. Krueger, and L. S. Walter, 1992, Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154.

    Article  Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1983, Absorption and Scattering of Light by Small Particles, New York: Wiley. Borovoi, A. G., and I. A. Grishin, 2003, Scattering matrices for large ice crystal particles, Journal of the Optical Society of America A., 20, 2071–2080.

    Google Scholar 

  • Bozzo, A., T. Maestri, R. Rizzi, and E. Tosi, 2008, Parameterization of single-scattering properties of mid-latitude cirrus clouds for fast radiative transfer models using particle mixtures, Geophys. Res. Lett., 35, L16809.

    Article  Google Scholar 

  • Bredow, J. W., R. Porco, M. S. Dawson, C. L. Betty, S. Self, and T. Thordarson, 1995, A multifrequency laboratory investigation of attenuation and scattering from volcanic ash clouds, IEEE Transactions on Geoscience and Remote Sensing, 33, 1071–1082.

    Article  Google Scholar 

  • Bréon, F.-M., and B. Dubrulle, 2004, Horizontally oriented plates in clouds, J. Atmos. Sci., 61, 2888–2898.

    Article  Google Scholar 

  • Buehler, S. A., C. Jiménez, K. F. Evans, P. Eriksson,B. Rydberg, A. J. Heymsfield, C. J. Stubenrauch, U. Lohmann, C. Emde,V. O. John, T. R. Sreerekhai, and C. P. Davis, 2007, A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude, Q. J. R. Meteor. Soc., 133, 109–128.

    Article  Google Scholar 

  • Chandler-Wilde, S. N., S. Langdon, and D. Hewitt, 2012, Review of numerical-asymptotic methods applied to high frequency scattering, Acta Numerica, Cambridge University Press, UK, doi:10.1017/S09624929.

    Google Scholar 

  • Chen G., P. Yang, and G. W. Kattawar, 2008, Application of the pseudospectral timedomain method to the scattering of light by nonspherical particles, Journal of the Optical Society of America A, 25, 785–790.

    Article  Google Scholar 

  • Chepfer, H., G. Brogniez, P. Goloub, F. M. Bréon, and P. H. Flamant, 1999, Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1, Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 521–543.

    Article  Google Scholar 

  • Clarke, A. J. M., E. Hesse, Z. Ulanowski, and P. H. Kaye, 2006, A 3D implementation of ray tracing combined with diffraction on facets: Verification and a potential application, Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 103–114.

    Article  Google Scholar 

  • Connolly, P. J., C. P. R. Saunders, M. W. Gallagher, K. N. Bower, M. J. Flynn, T. W. Choularton, J. Whiteway, and R. P. awson, 2005, Aircraft observations of the influence of electric fields on the aggregation of ice crystals, Q. J. R. Meteorol. Soc., 128, 1–19.

    Google Scholar 

  • Cooper, W. A., 1978, Cloud physics investigation by the University of Wyoming in HIPLEX 1977, Bureau of Reclamation Rep., AS, 119, 321.

    Google Scholar 

  • Cotton, R., S. Osborne, Z. Ulanowsk, P. Hirst, P. H. Kaye, and R. S. Greenway, 2010, The ability of the Small Ice Detector (SID-2) to characterise cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft, J. Oceanic. Atmos. Tech., 27, 290–303.

    Article  Google Scholar 

  • Cox, C. V., J. E. Harries, J. P. Taylor, P. D. Green, A. J. Baran, J. C. Pickering, A. E. Last, and J.E. Murray, 2010, Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus, Q. J. R. Meteorol. Soc., 136, 718–739.

    Google Scholar 

  • De Leon, R. R., and J. D. Haigh, 2007, Infrared properties of cirrus clouds in climate models, Q. J. R. Meteor. Soc., 133, 273–282.

    Article  Google Scholar 

  • Doutriaux-Boucher, M., J. C. Buriez, G. Brogniez, L. C.-Labonnote, and A. J. Baran, 2000, Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models, Geophys. Res. Lett., 27, 109–112.

    Google Scholar 

  • Draine, B.T., and P. J. Flatau, 1994, Discrete dipole approximation for scattering calculations, J. Opt. Soc. Am. A, 11, 1491–1499.

    Article  Google Scholar 

  • Dubovic, O., A. Sinyuk, T. Lapyonok, B.N. Holben, M. Mishchenko, P. Yang, T.F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W.J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, 2006, Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.

    Article  Google Scholar 

  • Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007, A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM, Atmos. Res., 83, 19–35.

    Article  Google Scholar 

  • Edwards, J. M., and T. Slingo, 1996, Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model, Q. J. R. Meteorol. Soc., 122, 689–719.

    Article  Google Scholar 

  • Evans, K. F., J. R. Wang, P. E. Racette, G. Heymsfield, and L. Li., 2005, Ice cloud retrievals and analysis with the compact scanning sunmillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE, J. Appl. Meteor., 44, 839–859.

    Google Scholar 

  • Farafonov, V. G., and N. V. Voshchinnikov, 2012, Light scattering by multilayered spheroidal particle, Applied Optics, 51, 1586–1597.

    Article  Google Scholar 

  • Feng, Q., P. Yang, G. W. Kattawar, C. N. Hsu, Si-Chee Tsay, I. Laszlo, 2009, Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations, Aerosol Science, 40, 776–789.

    Google Scholar 

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2008, Determination of the combined ventilation factor and capacitance for ice crystal aggregates from airborne observations in a tropical anvil cloud, J. Atmos. Sci., 65, 376–391.

    Article  Google Scholar 

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007, Snow size distribution parameterization for midlatitude and tropical ice cloud, J. Atmos. Sci., 64, 4346–4365.

    Article  Google Scholar 

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006, Shattering and particle interarrival times measured by optical array probes in ice clouds, J. Atmos. Ocean. Tech., 23, 1357–1371.

    Article  Google Scholar 

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005, Parametrization of ice-particle size distribution functions for midlatitude stratiform cloud, Q. J. R. Meteorol. Soc., 131, 1997–2017.

    Article  Google Scholar 

  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003, Ice particle interarrival times measured with a fast FSSP, J. Atmos. Ocean. Tech., 20, 249–261.

    Article  Google Scholar 

  • Foot, J. S., Some observations of the optical properties of clouds. II: Cirrus, 1988, Q. J. R. Meteor. Soc., 114, 141–164.

    Google Scholar 

  • Francis, P. N., 1995, Some aircraft observations of the scattering properties of ice crystals, J. Atmos. Sci., 52, 1142–1154.

    Article  Google Scholar 

  • Fu, Q., 2007, A new parameterization of an asymmetry factor of cirrus clouds for climate models, J. Atmos. Sci., 64, 4140–4150.

    Article  Google Scholar 

  • Fu Q., W. B. Sun, and P. Yang, 1999, Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths, J. Atmos. Sci., 56, 2937–2947.

    Article  Google Scholar 

  • Ganesh, M., and S. C. Hawkins, 2010, Three dimensional electromagnetic scattering Tmatrix computations, Journal of Computational and Applied Mathematics, 234, 1702–1709.

    Article  Google Scholar 

  • Gayet, J.-F., G. Mioche, L. Bugliaro, A. Protat, A. Minikin, M.Wirth, A. Dörnbrack, V.Shcherbakov, B. Mayer, A. Garnier, and C. Gourbeyre, 2012, On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment: Atmos. Chem. Phys., 12, 727–744.

    Google Scholar 

  • Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011, Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment, Atmos. Chem. Phys., 11, 2537–3544.

    Article  Google Scholar 

  • Ghobrial, S. I., and S. M. Sharief, 1987, Microwave attenuation and cross polarization in dust storms, IEEE Trans. Antennas. Propagat., AP-35, 418–425.

    Article  Google Scholar 

  • Grenfell, T. C., S. P. Neshyba, and S. G. Warren, 2005, Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates, J. Geophys. Res., 110, Art. D17203.

    Google Scholar 

  • Grenfell, T. C., and S. G. Warren, 1999, Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation, J. Geophys. Res., 104, 31697–31709.

    Article  Google Scholar 

  • Guignard, A., C. J. Stubenrauch, A. J. Baran, and R. Armante, 2012, Bulk microphysical properties of semi-transparent cirrus from AIRS: a six years global climatology and statistical analysis in synergy with CALIPSO and CloudSat, Atmos. Chem. Phys., 12, 503–525.

    Article  Google Scholar 

  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011, Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution, J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.

    Article  Google Scholar 

  • Hansen, J.E., and L.D. Travis, 1974, Light scattering in planetary atmospheres. Space Sci. Rev.,16, 527–610.

    Google Scholar 

  • Harrison, R. G., K. A. Nicoll, Z. Ulanowski, and T A Mather, 2010, Self-charging of the Eyjafjallajökull volcanic ash plume, Environ. Res. Lett., 5, doi:10.1088/1748-9326/5/2/024004.

    Google Scholar 

  • Havemann, S., A. J. Baran, and J. M. Edwards, 2003, Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder singlescattering properties using the T-matrix and improved geometric optics methods, Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 707–720.

    Article  Google Scholar 

  • Havemann, S., and A. J. Baran, 2001, Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: Application to hexagonal cylinders, Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 139–158.

    Article  Google Scholar 

  • Haywood, J. M., B. T. Johnson, S. R. Osborne, A. J. Baran, M. Brooks, S. F. Milton, J. Mulcahy, D. Walters, R. P. Allan, A. Klaver, P. Formenti, H. E. Brindley, S. Christopher, and P. Gupta, 2011, Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign, Q. J. R. Meteorol. Soc., 137, 1106–1116.

    Article  Google Scholar 

  • Haywood, J. M., R. P. Allan, I. Culverwell, T. Slingo, S. Milton, J. Edwards, and N. Clerbaux, 2005, Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003, J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232.

    Article  Google Scholar 

  • Haywood, J., P. Francis, S. Osborne, M. Glew,N. Loeb, E. Highwood,D.Tanré, G. Myhre, P. Formenti, and E. Hirst, 2003, Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum, J. Geophys. Res., 108 (D18), 8577, doi:10.1029/2002JD002687.

    Google Scholar 

  • Hesse, E., 2008, Modelling diffraction during ray tracing using the concept of energy flow lines, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 1374–1383.

    Article  Google Scholar 

  • Heymsfield, A. J., 2007, On measurements of small ice particles in clouds, Geophys. Res. Lett., Art. No. L23812.

    Google Scholar 

  • Heymsfield, A. J., 2003, Properties of tropical and midlatitude ice cloud particle ensembles. Part II: Applications for mesoscale and climate models, J. Atmos. Sci., 60, 2592–2611.

    Article  Google Scholar 

  • Heymsfield, A. J., and L. M. Miloshevich, 2003, Parametrizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 60, 936–956.

    Article  Google Scholar 

  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002, Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns, J. Atmos. Sci., 59, 3457–3491.

    Article  Google Scholar 

  • Heymsfield, A. J., and L. M. Miloshevich, 1995, Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II, J. Atmos. Sci., 52, 4302–4326.

    Article  Google Scholar 

  • Heymsfield, A. J., and C. R. Platt, 1984, A parameterization of the particle size spectrum of ice clouds in terms of ambient temperature and their ice water content, J. Atmos. Sci., 41, 846–855.

    Article  Google Scholar 

  • Highwood, E. J., J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, 2003, Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during SHADE. 2. Terrestrial spectrum, J. Geophys. Res., 108, doi:10.1029/2002JD002552.

    Google Scholar 

  • Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K. M. Xu, 2009, Parameterization of shortwave and longwave properties of ice clouds for use in climate models, Journal of Climate, 22, 6287–6312.

    Article  Google Scholar 

  • Hong G, P. Yang, B. A. Baum, and A. J. Heymsfield, 2008, Relationship between ice water content and equivalent radar reflectivity for clouds consisting of nonspherical ice particles, J. Geophys. Res., 113, D20205, doi: 10.1029/2008JD009890.

    Article  Google Scholar 

  • Hong, G., P. Yang, B. C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick, 2007, High cloud properties from three years of MODIS Terra and Aqua collection-4 data over the tropics, J. Appl. Met and Climat., 46, 1840–1856.

    Article  Google Scholar 

  • Hu, Y., M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, 2007, The depolarization–attenuated backscatter relation: CALIPSO lidar measurements vs. theory, Optics Express, 15, 5327–5332.

    Article  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change, (2007). Climate Change 2007 – The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge: Cambridge University Press.

    Google Scholar 

  • Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot, 2001, A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds, J. Atmos. Res., 59, 89–113.

    Article  Google Scholar 

  • Johnson, B., K. Turnbull, P. Brown, R. Burgess, J. Dorsey, A. J. Baran, H. Webster, J. Haywood, R. Cotton, Z. Ulanowski, E. Hesse, A. Woolley, and P. Rosenberg, 2012, Insitu observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010, J. Geophys. Res., 117, D00U24, doi:10.1029/2011JD016760.

    Google Scholar 

  • Johnson, B, and S. R. Osborne, 2011, Physical and optical properties of mineral dust aerosol measured by aircraft during the GERBILS campaign, Q. J. R. Meteorol. Soc., 137, 1117–1130.

    Article  Google Scholar 

  • Kahnert, F. M., 2003, Numerical methods in electromagnetic scattering theory, Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 775–824.

    Article  Google Scholar 

  • Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2002, Using simple particle shapes to model the stokes scattering matrix of ensembles of wavelength-sized particles with particles with complex shapes: possibilities and limitations, Journal of Quantitative Spectroscopy and Radiative Transfer, 74, 167–182.

    Article  Google Scholar 

  • Kaye, P. H., E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, 2008, Classifying atmospheric ice crystals by spatial light scattering, Optics Letters, 33, 1545–1547.

    Article  Google Scholar 

  • Kokhanovsky, A., 2004, Optical properties of terrestrial clouds, Earth Sci. Revs., 64, 189–241.

    Google Scholar 

  • Kokhanovsky, A. A., 2003, Optical properties of irregularly shaped particles. J. Phys. D – Appl. Phys., 36, 915–923.

    Google Scholar 

  • Kokhanovsky, A. A., 1998, On light scattering in random media with large densely packed particles, J. Geophys. Res., 103, 6089–6096.

    Article  Google Scholar 

  • Kokhanovsky, A., and A. Macke, 1997, The dependence of the radiative characteristics of optically thick media on the shape of particles, Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 393–407.

    Article  Google Scholar 

  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011, Small ice particles in tropospheric clouds: fact or artefact? Airborne icing instrumentation evaluation experiment, Bull. Amer. Meteor. Soc., 92, 967–973.

    Article  Google Scholar 

  • Korolev, A. V., and G. A. Isaac, 2003, Roundness and aspect ratios of particles in ice clouds, J. Atmos. Sci., 60, 1795–1808.

    Article  Google Scholar 

  • Korolev, A., G. A. Isaac, and J. Hallett, 2000, Ice particle habits in stratiform clouds,Q. J. R. Meteor. Soc., 126, 2873–2902.

    Article  Google Scholar 

  • Korolev, A. V., G. A. Isaac, and J. Hallett, 1999, Ice particle habits in Arctic clouds, Geophys. Res. Lett., 26, 1299–1302.

    Article  Google Scholar 

  • Labonnote, L.-C., G. Brogniez, J. C. Buriez, M. Doutriaux-Boucher, J. F. Gayet, and Macke A., 2001, Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOSPOLDER measurements, J. Geophys. Res., 106, 12139–12153.

    Article  Google Scholar 

  • Lambert, A., R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, and F. W. Taylor, 1993, Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS, Geophys. Res. Lett., 20, 1287–1290.

    Article  Google Scholar 

  • Lawson, R. P., 2011, Effects of ice particle shattering on the 2D-S probe, Atmos. Meas. Tech., 4, 1361–1381.

    Article  Google Scholar 

  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. X. Mo, and H. Jonsson, 2006, The 2D-S (Stereo) probe: Designs and preliminary tests of a new airborne, highspeed, high-resolution imaging probe, J. Atmos. Ocean. Tech., 23, 1462–1477.

    Article  Google Scholar 

  • Lawson, R. P., B. A. Baker, and B. L. Pilson, 2003, In-situ measurements of microphysical properties of mid-latitude and anvil cirrus and validation of satellite retrievals. In Proc. 30th Symposium on Remote Sensing of Environment. 2003. Honolulu, Hawaii.

    Google Scholar 

  • Lee, J., P. Yang, A. E. Dessler, B.-C. Gao, and S. Platnick, 2009, Distribution and radiative forcing of tropical thin cirrus clouds, J. Atmos. Sci., 66, 3721–3731.

    Google Scholar 

  • Lee, Y. K., P. Yang, M. I. Mishchenko, B. A. Baum, Y. Hu, H.-L. Huang, W. J. Wiscombe, and A. J. Baran, 2003, On the use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths, Applied Optics, 42, 2653–2664.

    Article  Google Scholar 

  • Levy, R. C., L. A. Remer, and Y. J. Kaufman, 2004, Effects of neglecting polarization on the MODIS aerosol retrieval over land, IEEE Transactions on Geoscience and Remote Sensing, 42, 2576–2583.

    Article  Google Scholar 

  • Liou, K. N., 2002, An Introduction to Atmospheric Radiation, 2nd edition, Academic Press, New York.

    Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2000, Light scattering and radiative transfer in ice crystal clouds: Applications to climate research. In: Light Scattering by Nonspherical Particles: Theory, Measurements and Geophysical Applications, Eds. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Academic Press, New York, Chapter 15.

    Google Scholar 

  • Liou, K. N., and Y. Takano, 1994, Light scattering by nonspherical particles: Remote sensing and climatic implications, J. Atmos. Res., 31, 271–298.

    Article  Google Scholar 

  • Long, C. S., and L. L. Stowe, 1994, Using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption, Geophys. Res. Lett., 21, 2215–2218.

    Article  Google Scholar 

  • López, M. L., and E. E. Ávila, 2012, Deformations of frozen droplets formed at 40º C, Geophys. Res. Lett., 39, L01805, doi:10.1029/2011GL050185.

    Google Scholar 

  • Macke, A., J. Mueller, and E. Raschke, 1996a, Single scattering properties of atmospheric ice crystal, J. Atmos. Sci., 53, 2813–2825.

    Article  Google Scholar 

  • Macke, A., M. I. Mishchenko, and B. Cairns, 1996b, The influence of inclusions on light scattering by large particles, J. Geophys. Res., 101, 23311–23316.

    Article  Google Scholar 

  • Mackowski, D. W., 2002, Discrete dipole moment method for calculation of the T matrix for nonspherical particles, J. Opt. Soc. Am. A, 19, 881–893.

    Article  Google Scholar 

  • Magono, C., and C. W. Lee C, 1966, Meteorological classification of natural snow crystals, J. Faculty of Sci., Hokkaidô University, 2, 321–335.

    Google Scholar 

  • Mano, Y., 2000, Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method, Applied Optics, 39, 5541–5546.

    Article  Google Scholar 

  • Marenco, F., B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Ricketts, 2011, Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume, J. Geophys. Res., 116, doi:10.1029/2011JD016396.

    Google Scholar 

  • Mauno, P., G. M. McFarquhar, P. Räisänen, M. Kahnert, M. S. Timlin, and T. Nousiainen, 2011, The influence of observed cirrus microphysical properties on shortwave radiation: A case study over Oklahoma, J. Geophys. Res., 116, D22208, doi:10.1029/2011JD016058.

    Article  Google Scholar 

  • McCormick, M.P., and E. Veiga, 1992, SAGE II measurements of early Pinatubo aerosols, Geophys. Res. Lett., 19, 155–158.

    Article  Google Scholar 

  • McFarquhar G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007, Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool Cloud Experiment (TWP-ICE), Geophys. Res. Lett., Art. No. L13803.

    Google Scholar 

  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002, A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions, J. Atmos. Sci., 59, 2458–2478.

    Article  Google Scholar 

  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999, Use of observed ice crystal sizes and shapes to calculate the mean-scattering properties and multispectral radiance, CEPEX April 4 1993 case study, J. Geophy. Res., 104, 31763–31779.

    Article  Google Scholar 

  • McFarquhar, G. M., and A. J. Heymsfield, 1998, The definition and significance of an effective radius for ice clouds, J. Atmos. Sci., 55, 2039–2052.

    Article  Google Scholar 

  • McFarquhar, G. M., and A. J. Heymsfield, 1996, Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment (CEPEX), J. Atmos. Sci., 53, 2401–2423.

    Article  Google Scholar 

  • Meng, Z., P. Yang, G. Kattawar, L. Bi, K. Liou, and I. Laszlo, 2010, Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations, Journal of Aerosol Science, 41, 501–512.

    Article  Google Scholar 

  • Mishchenko, M. I., B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, 2007, Accurate monitoring of terrestrial aerosols and total solar irradiance – Introducing the glory mission, Bulletin of the American Meteorological Society, 88, 677–691.

    Article  Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, UK.

    Google Scholar 

  • Mishchenko, M. I., 2000, Calculation of the amplitude matrix for a nonspherical particle in fixed orientation, Applied Optics, 39, 1026–1031.

    Article  Google Scholar 

  • Mishchenko, M. I., and K. Sassen, 1998, Depolarization of lidar returns by small ice crystals, An application to contrails, Geophys. Res. Lett., 25, 309–312.

    Article  Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 1998, Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetry scatterers, Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 309–324.

    Article  Google Scholar 

  • Mishchenko, M. I., and A. Macke A., 1997, Asymmetry parameters of the phase function for isolated and densely packed spherical particles with multiple internal inclusions in the geometric optics limit, Journal of Quantitative Spectroscopy and Radiative Transfer, 57, 767–794.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996, T-matrix computations of light scattering by nonspherical particles: A review, Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535–575.

    Article  Google Scholar 

  • Mishchenko, M. I., and J. W. Hovenier, 1995, Depolarization of light backscattered by randomly oriented nonspherical particles, Opt. Lett., 20, 1356–1358.

    Article  Google Scholar 

  • Mishchenko, M. I., A. A. Lacis, and L. D. Travis, 1994, Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres, Journal of Quantitative Spectroscopy and Radiative Transfer, 51, 491–510.

    Article  Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 1994, Light scattering by polydispersion of randomly oriented spheroids with sizes comparable to wavelengths of observation, Applied Optics, 33, 7206–7225.

    Article  Google Scholar 

  • Mishchenko, M. I., 1991, Light scattering by randomly oriented axially symmetric particles, J. Opt. Soc. Am. A, 8, 871–882.

    Article  Google Scholar 

  • Mitchell, D. L., R. P. Lawson, and B. Baker, 2011, Understanding effective diameter and its application to terrestrial radiation in ice clouds, Atmos. Chem. Phys., 11, 3417–3429.

    Article  Google Scholar 

  • Mitchell, D. L., P. Rasch, D. Ivanova, G. M. McFarquar, and T. Nousiainen, 2008, Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations, Geophys. Res. Lett., 35, L09806.

    Article  Google Scholar 

  • Mitchell, D. L., A. J. Baran, W. P. Arnott, and C. Schmitt, 2006, Testing and comparing the modified anomalous diffraction approximation, J. Atmos. Sci., 63, 2948–2962.

    Article  Google Scholar 

  • Mitchell, D. L., 2002, Effective diameter in radiation transfer, J. Atmos. Sci., 59, 2330–2346.

    Article  Google Scholar 

  • Mitchell, D. L., W. P. Arnott, C. Schmitt, A. J. Baran, S. Havemann, and Q. Fu, 2001, Photon tunneling contributions to extinction for laboratory grown hexagonal columns, Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 761–776.

    Article  Google Scholar 

  • Mitchell, D. L., Y. Liu, and A. Macke, 1996, Modeling cirrus clouds. Part II: Treatment of radiative properties, J. Atmos. Sci., 53, 2967–2988.

    Article  Google Scholar 

  • Muinonen, K. Light scattering by stochastically shaped particles, 2000, In: Mishchenko MI, Hovenier JW, Travis LD, editors, Light Scattering by Monspherical Particles, San Diego, Academic Press, p. 323–352.

    Google Scholar 

  • Muinonen, K., T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, 1996, Light scattering by Gaussian random particles: ray optics approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 577–601.

    Article  Google Scholar 

  • Muinonen, K., 1989, Scattering of light by crystals: a modified Kirchhoff approximation, Applied Optics, 28, 3044–3050.

    Article  Google Scholar 

  • Nazaryan, H., M. P. McCormick, and W. P. Menzel, 2008, Global characterization of cirrus clouds using CALIPSO data, J. Geophys. Res., 113, D16211.

    Article  Google Scholar 

  • Neshyba, S. P., T. C. Grenfell, and S. G. Warren, 2003, Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates, J. Geophys. Res., 108, Art. 4448.

    Google Scholar 

  • Newman, S., L. Clarisse, D. Hurtmans, F. Marenco, B. Johnson, K. Turnbull, S. Havemann, A. J. Baran, D. O’Sullivan, and J. Haywood, 2012, A case study of observations of volcanic ash from the Eyjafjallajökull eruption. Part 2: airborne and satellite radiative measurements, J. Geophys. Res., 117, D00U13, doi:10.1029/2011JD016780.

    Google Scholar 

  • Nicoll, K. A., R. G. Harrison, and Z. Ulanowski, 2011, Observations of Saharan dust layer electrification, Environ. Res. Lett., 6, doi:10.1088/1748-9326/6/1/014001.

    Google Scholar 

  • Noel, V., and H. Chepfer, 2010, A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), J. Geophys. Res., 115, art. D00H23.

    Google Scholar 

  • Noel, V., and K. Sassen, 2005, Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations, J. Appl. Met., 44, 653–664.

    Article  Google Scholar 

  • Noel, V., and H. Chepfer H, 2004, Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements, J. Atmos. Sci., 61, 2073–2081.

    Google Scholar 

  • Nousiainen, T., 2009, Optical modeling of mineral dust particles: A review, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1261–1279.

    Article  Google Scholar 

  • Nousiainen, T., and G. M. McFarquhar, 2004, Light scattering by small quasi-spherical ice crystals, J. Atmos. Sci., 61, 2229–2248.

    Article  Google Scholar 

  • Nousiainen, T., and K. Vermeulen, 2003, Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations using spheroids, Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 1031–1042.

    Article  Google Scholar 

  • Ohtake, T., 1970, Unusual crystal in ice fog, J. Atmos. Sci., 27, 509–511.

    Article  Google Scholar 

  • Osborne, S. R., A. J. Baran, B. T. Johnson, J. M. Haywood, E. Hesse, and S. Newman, 2011, Short-wave and long-wave radiative properties of Saharan dust aerosol, Q. J. R. Meteorol. Soc., 137, 1149–1167, doi: 10.1002/qj.771.

    Article  Google Scholar 

  • Otto, S., T. Trautmann, and M. Wendisch, 2011, On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations, Atmos. Chem. Phys., 11, doi:10.5194/acp-11-4469-2011.

    Google Scholar 

  • Penner, J. E., M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, and G. Pitari, 2001, Aerosols, their direct and indirect effects, in: Climate Change 2001: The Scientific Basis, edited by: J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Report to Intergovernmental Panel on Climate Change from the Scientific Assessment Working Group (WGI), Cambridge University Press, UK, 289–416.

    Google Scholar 

  • Petrov, D., Y. Shkuratov, and G. Videen, 2008, Sh-matrices method applied to light scattering by finite circular cylinders, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 1474–1495.

    Article  Google Scholar 

  • Petrov, D, Y. Shkuratov, E. Zubko, and G. Videen, 2007, Sh-matrices method as applied to scattering by particles with layered structure, Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 437–54.

    Article  Google Scholar 

  • Pollack, J., O. Toon, and B. Khare, 1973, Optical properties of some terrestrial rocks and glasses, Icarus, 19, 372–389.

    Article  Google Scholar 

  • Prospero, J. M., W. M. Landing, and M. Schulz, 2010, African dust deposition to Florida: Temporal and spatial variability and comparisons to models, J. Geophys. Res., 115, D13304, doi:10.1029/2009JD012773.

    Article  Google Scholar 

  • Purcell, E. M., and C. R. Pennypacker, 1973, Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J., 186, 705–714.

    Article  Google Scholar 

  • Ramachandran, S., V. Ramaswamy, G. L. Stenchikov, and A. Robock, 2000, Radiative impacts of the Mt. Pinatubo volcanic eruption: Lower stratospheric response, J. Geophys. Res., 105, 24,409–24,429.

    Article  Google Scholar 

  • Rolland, P., K. N. Liou, M. D. King, S. C. Tsay, G. M. McFarquhar, 2000, Remote sensing of optical and microphysical properties of cirrus clouds using MODIS channels: methodology and sensitivity to assumptions, J. Geophys. Res., 105, 11721–11738.

    Article  Google Scholar 

  • Sassen, K., Z. Wang, and D. Liu, 2008, Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements, J. Geophys. Res., 113, D00A12.

    Google Scholar 

  • Saunders, C. P. R., and N. M. A. Wahab, 1975, The influence of electric fields on the aggregation of ice crystals, J. Meteorol. Soc. Japan, 53, 121–126.

    Google Scholar 

  • Schmitt, C. G., and A. J. Heymsfield, 2007, On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus, Journal of the Atmospheric Sciences, 64, 4514–4519.

    Article  Google Scholar 

  • Schmitt, C. G., J. Iaquinta, A. J. Heymsfield, 2006, The asymmetry parameter of cirrus clouds composed of hollow bullet rosette-shaped ice crystals from ray-tracing calculations, J. Appl. Meteor. Climatol., 45, 973–981.

    Article  Google Scholar 

  • Shcherbakov, V., G.-F. Gayet, B. Baker, and P. Lawson, 2006, Light scattering by single natural ice crystals, J. Atmos. Sci., 63, 1513–1525.

    Article  Google Scholar 

  • Schumann, U., B. Weinzerl, O. Reitebuch, H. Schlager, A. Minikin, C.Forster, R. Baumann, T. Sailer, K. Graf, H. Mannstein, C. Voigt, S. Rahm, R. Simmet, M. Scheibe, M. Lichtenstern, R. Stock, H. Rüba, D. Schäuble, A. Tafferner, M. Rautenhaus, T. Gerz, H. Ziereis, M. Krautstrunk, C. Mallaun, J.-F. Gayet, K. Lieke, K. Kandler, M. Ebert, S. Weinbruch, A. Stohl, J. Gasteiger, S. Gross, V. Freudenthaler, M. Wiegner, A. Ansmann, M. Tesche, H. Olafsson, and K. Sturm, 2011, Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11, 2245–2279, doi:10.5194/acp-11-2245-2011.

    Google Scholar 

  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002, Global cooling following the eruption of Mt. Pinatubo: A test of climate feedback by water vapor, Science, 296, 727–730.

    Google Scholar 

  • Stoelinga, M. T., J. D. Locatelli, and C. P. Woods, 2007, The occurrence of ‘irregular’ ice particles in stratiform clouds, J. Atmos. Sci., 64, 2740–2750.

    Article  Google Scholar 

  • Stowe, L., R. M. Carey, and P. P. Pelligrino, 1992, Monitoring the Mt. Pinatubo aerosol layer with NOAA 11 AVHRR data, Geophys. Res. Lett., 19, 159–162.

    Article  Google Scholar 

  • Strong, A. E., and L. L. Stowe, 1993, Comparing stratospheric aerosols from el Chichon and Mount Pinatubo using AVHRR data, Geophys. Res. Lett., 20, 1183–1186.

    Article  Google Scholar 

  • Stubenrauch, C. J, A. Chédin, G. Rädel, N. A. Scott, and S. Serrar. 2006, Cloud properties and their seasonal and diurnal variability from TOVS Path-B, J. Climate, 19, 5531–5553.

    Article  Google Scholar 

  • Sun, W., N. G. Loeb, and P. Yang, 2006, On the retrieval of ice cloud particle shape from POLDER measurements, Journal of Quantitative Spectoscopy and Radiative Transfer, 101, 435–447.

    Article  Google Scholar 

  • Sun, W. B., Q. Fu, and Z. Chen, 1999, Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions, Applied Optics, 38, 3141–3151.

    Article  Google Scholar 

  • Tanré, D., M. Herman, and Y. J. Kaufman, 1996, Information on aerosol size distribution contained in solar reflected spectral radiances, J. Geophys. Res., 101, 19043–19060.

    Article  Google Scholar 

  • Thelen, J.-C., and J. M. Edwards, 2012, Short-wave radiances: comparison between SEVIRI and the unified model, Q. J. R. Meteorol. Soc., in press.

    Google Scholar 

  • Turnbull, K., B. Johnson, F. Marenco, J. Haywood, A. Woolley, et al., 2012, A case study of observations of volcanic ash from the Eyjafjallajökull eruption; in situ airborne observations, J. Geophys. Res., 117, D00U12, doi:10.1029/2011JD016688.

    Google Scholar 

  • Ulanowski, Z., P.H. Kaye, E. Hirst, and R. Greenaway, 2011, Retrieving the size of particles with rough surfaces from 2D scattering patterns. 13th Int. Conf. on Electromagnetic & Light Scatt., Taormina. In: Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 89, Suppl. 1, C1V89S1P087. doi: 10.1478/C1V89S1P087.

    Google Scholar 

  • Ulanowski, Z., P. H. Kaye, E. Hirst, and R. S. Greenway, 2010, Light scattering by ice particles in the Earth’s atmosphere and related laboratory measurements, In Electromagnetic and Light Scattering by Nonspherical Particles XII, Helsinki 2010.

    Google Scholar 

  • Ulanowski, Z., J. Bailey, P. W. Lucas, J. H. Hough, and E. Hirst, 2007, Alignment of atmospheric mineral dust due to electric field, Atmos. Chem. Phys., 7, 6161–6173.

    Article  Google Scholar 

  • Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006, Light scattering by complex ice-analogue crystals, Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 382–392.

    Article  Google Scholar 

  • Um, J., and G. M. McFarquhar, 2011, Dependence of the single-scattering properties of small ice crystals on idealized shape models, Atmospheric Chemistry and Physics, 11, doi:10.5194/acp-11-1-2011.

    Google Scholar 

  • Um, J., and G. M. McFarquhar, G. M., 2009, Single-scattering properties of aggregates of plates, Q. J. Roy. Meteor. Soc., 135, 291–304.

    Google Scholar 

  • Um, J., and G. M. McFarquhar, 2007, Single-scattering properties of aggregates of bullet rosettes in cirrus, J. Appl. Meteorol. Climatol., 46, 757–775.

    Article  Google Scholar 

  • van de Hulst, H. C., 1980, Multiple Light Scattering: Tables, Formulas, and Applications, Academic Press, New York.

    Google Scholar 

  • van de Hulst, H. C., 1957, Light Scattering by Small Particles, Wiley, New York.

    Google Scholar 

  • Veihelmann, B., T. Nousiainen, M. Kahnert, W. J. van der Zande, 2006, Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry, Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 393–405.

    Article  Google Scholar 

  • Volkovitskiy, O. A., L. N. Pavlova, and A. G. Petrushin, 1980, Scattering of light by ice crystals, Atmos. Ocean. Phys., 16, 90–102.

    Google Scholar 

  • Volten, H., O. Munoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, 2001, Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, J. Geophys. Res., 106, 17,375–17,401.

    Article  Google Scholar 

  • Wahab, N. M. A., 1974, Ice crystal interactions in electric fields. PhD;UMIST. Waterman, P. C., 1971, Symmetry, unitarity, and geometry in electromagnetic scattering, Physical Review, D, 3, 825–839.

    Google Scholar 

  • Weickmann, H., 1947, Die Eisphase in der Atmosphare, Royal Aircraft Establishment, Farnborough. Weinman, J. A., and M. J. Kim, 2007, A simple model of the millimeter-wave scattering parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors, J. Atmos. Sci., 64, 634–644.

    Google Scholar 

  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979, Scattering of solar radiation by hexagonal ice crystals, Applied Optics, 18, 2663–2671.

    Article  Google Scholar 

  • Westbrook, C. D., A. J. Illingworth, E. J. Connor, and R. J. Hogan, 2009, Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds, Q. J. R. Meteor. Soc., 136, 260–276.

    Article  Google Scholar 

  • Westbrook C. D., R. C. Ball, and P. R. Field, 2008, Notes and correspondence corrigendum: Radar scattering by aggregate snowflakes, Q. J. R. Meteorol. Soc., 134, 547–548.

    Article  Google Scholar 

  • Westbrook, C. D., R. C. Ball, and P. R. Field, 2006, Radar scattering by aggregate snowflakes, Q. J. R. Meteorol. Soc., 132, 897–914.

    Article  Google Scholar 

  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004, Theory of growth by differential sedimentation, with application to snowflake formation, Phys. Rev., E, 70, Art. No. 021403.

    Google Scholar 

  • Whitby, K. T., 1978, The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135–159.

    Article  Google Scholar 

  • Whitby, K. T., The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135–159.

    Google Scholar 

  • Wriedt, T., 2009, Light scattering theories and computer codes, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 833–843.

    Article  Google Scholar 

  • Wriedt, T., and Doicu, A., 1998, Formulation of the extended boundary condition method for three-dimensional scattering using the method of discrete sources, Journal of Modern Optics, 45, 199–213.

    Article  Google Scholar 

  • Wylie, D. P, and W. P. Menzel, 1999, Eight years of cloud statistics using HIRS, J. Climate, 12, 170–184.

    Article  Google Scholar 

  • Wyser, K., and P. Yang, 1998, Average ice crystal size and bulk short-wave singlescattering properties of cirrus clouds, Atmos. Res., 49, 315–335.

    Article  Google Scholar 

  • Xie, Y. P., Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011, Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds, Applied Optics, 50, 1065–1081.

    Google Scholar 

  • Yang, H., S. Dobbie, R. Herbert, P. Connolly, M. Gallagher, S. Ghosh, S. M. R. K. Al-Jumur, and J. Clayton, 2011, The effect of observed vertical structure, habits, and size distributions on the solar radiative properties and cloud evolution of cirrus clouds, Q. J. R. Meteorol. Soc., doi:10.1002/qj.973.

    Google Scholar 

  • Yang., P., Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y.-X. Hu,

    Google Scholar 

  • D. Winker, and J. Iaquinta, 2008, Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties, J. Appl. Meteor. Climatol., 47, 2311–2330.

    Article  Google Scholar 

  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H. L. Huang, S. C. Tsay, and S. Ackerman, 2003, Single-scattering properties of droxtals, Journal of Quantitative Spectroscopy and radiative Transfer, 79–80, 1159–1180.

    Article  Google Scholar 

  • Yang, P., K. N. Liou, M. I. Mishchenko, and B. C. Gao, 2000, An efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols, Applied Optics, 39, 3727–3737.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1998, Single-scattering properties of complex ice crystals in terrestrial atmosphere, Contr. Atmos. Phys., 71, 223–248.

    Google Scholar 

  • Yang P., and K. N. Liou, 1997, Light scattering by hexagonal ice crystals, solution by a ray-by-ray integration algorithm, J. Opt. Soc. Am. A., 14, 2278–2289.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1996, Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals, Applied Optics, 35, 6568–6584.

    Article  Google Scholar 

  • Yee, K. S., 1966, Numerical solution of initial value boundary problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagat., 14, 302–307.

    Google Scholar 

  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010, Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio, J. Geophys. Res., 115, art. D00H32.

    Google Scholar 

  • Yuan, J., R. A. Houze Jr, and A. J. Heymsfield, 2011, Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat, J. Atmos. Sci., 68, 1653–1674.

    Article  Google Scholar 

  • Zhang, Z. B., P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. X. Hu, A. J. Heymsfield, and J. Reichardt, 2004, Geometrical optics solution to light scattering by droxtal ice crystals, Applied Optics, 43, 2490–2499.

    Article  Google Scholar 

  • Zhang, X. Y., R. Arimoto, G. H. Zhu, T. Chen, and G. Y. Zhang, 1998, Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions, Tellus, 50B, 317–330.

    Google Scholar 

  • Zhao, Y., G. Mace, and J. M. Comstock, 2011, The occurrence of particle size distribution bimodality in midlatitude cirrus as inferred from ground-based remote sensing data, J. Atmos. Sci., 68, 1162–1175.

    Article  Google Scholar 

  • Zubko, E., Y. Shkuratov, M. Mishchenko, and G. Videen, 2008, Light scattering in a finite multi-particle system, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 2195–2206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Baran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baran, A.J. (2013). Light scattering by irregular particles in the Earth’s atmosphere. In: Kokhanovsky, A. (eds) Light Scattering Reviews 8. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32106-1_1

Download citation

Publish with us

Policies and ethics