Skip to main content

Lattices of Logical Fragments over Words

(Extended Abstract)

  • Conference paper
Book cover Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Included in the following conference series:

Abstract

This paper introduces an abstract notion of fragments of monadic second-order logic. This concept is based on purely syntactic closure properties. We show that over finite words, every logical fragment defines a lattice of languages with certain closure properties. Among these closure properties are residuals and inverse \(\mathcal C\)-morphisms. Here, depending on certain closure properties of the fragment, \(\mathcal C\) is the family of arbitrary, non-erasing, length-preserving, length-multiplying, or lengthreducing morphisms. In particular, definability in a certain fragment can often be characterized in terms of the syntactic morphism. This work extends a result of Straubing in which he investigated certain restrictions of first-order formulae.

As motivating examples, we present (1) a fragment which captures the stutter-invariant part of piecewise-testable languages and (2) an acyclic fragment of Σ2. As it turns out, the latter has the same expressive power as two-variable first-order logic FO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaubard, L., Pin, J.-É., Straubing, H.: Actions, wreath products of \(\mathcal{C}\)-varieties and concatenation product. Theor. Comput. Sci. 356, 73–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaubard, L., Pin, J.-É., Straubing, H.: First order formulas with modular predicates. In: LICS 2006, pp. 211–220. IEEE Computer Society (2006)

    Google Scholar 

  4. Diekert, V., Gastin, P.: First-order definable languages. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press (2008)

    Google Scholar 

  5. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press (1976)

    Google Scholar 

  7. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)

    Article  MathSciNet  Google Scholar 

  8. Gehrke, M., Grigorieff, S., Pin, J.-É.: Duality and Equational Theory of Regular Languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California (1968)

    Google Scholar 

  10. Kufleitner, M., Lauser, A.: Lattices of logical fragments over words. CoRR, abs/1202.3355 (2012), http://arxiv.org/abs/1202.3355

  11. Kunc, M.: Equational description of pseudovarieties of homomorphisms. Theor. Inform. Appl. 37, 243–254 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. McNaughton, R., Papert, S.: Counter-Free Automata. The MIT Press (1971)

    Google Scholar 

  13. Pin, J.-É.: A variety theorem without complementation. Russian Mathematics (Iz. VUZ) 39, 80–90 (1995)

    MathSciNet  Google Scholar 

  14. Pin, J.-É.: Expressive power of existential first-order sentences of Büchi’s sequential calculus. Discrete Math. 291(1-3), 155–174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pin, J.-É., Straubing, H.: Some results on \(\mathcal{C}\)-varieties. Theor. Inform. Appl. 39, 239–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MATH  Google Scholar 

  17. Simon, I.: Piecewise Testable Events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

    Google Scholar 

  18. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser (1994)

    Google Scholar 

  19. Straubing, H.: On Logical Descriptions of Regular Languages. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Straubing, H., Thérien, D., Thomas, W.: Regular languages defined with generalized quantifiers. Inf. Comput. 118(2), 289–301 (1995)

    Article  MATH  Google Scholar 

  21. Tesson, P., Thérien, D.: Diamonds are forever: The variety DA. In: Gomes, G., et al. (eds.) Semigroups, Algorithms, Automata and Languages 2001, pp. 475–500. World Scientific (2002)

    Google Scholar 

  22. Tesson, P., Thérien, D.: Logic meets algebra: The case of regular languages. Log. Methods Comput. Sci. 3(1), 1–37 (2007)

    Google Scholar 

  23. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation. In: STOC 1998, pp. 234–240. ACM Press (1998)

    Google Scholar 

  24. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25, 360–376 (1982)

    Article  MATH  Google Scholar 

  25. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Dokl. Akad. Nauk SSSR 140, 326–329 (1961) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kufleitner, M., Lauser, A. (2012). Lattices of Logical Fragments over Words. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics