Skip to main content

Writing on Clouds

  • Conference paper
Intelligent Computer Mathematics (CICM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7362))

Included in the following conference series:

  • 976 Accesses

Abstract

While writer-independent handwriting recognition systems are now achieving good recognition rates, writer-dependent systems will always do better. We expect this difference in performance to be even larger for certain applications, such as mathematical handwriting recognition, with large symbol sets, symbols that are often poorly written, and no fixed dictionary. In the past, to use writer-dependent recognition software, a writer would train the system on a particular computing device without too much inconvenience. Today, however, each user will typically have multiple devices used in different settings, or even simultaneously. We present an architecture to share training data among devices and, as a side benefit, to collect writer corrections over time to improve personal writing recognition. This is done with the aid of a handwriting profile server to which various handwriting applications connect, reference, and update. The user’s handwriting profile consists of a cloud of sample points, each representing one character in a functional basis. This provides compact storage on the server, rapid recognition on the client, and support for handwriting neatening. This work uses the word “cloud” in two senses. First, it is used in the sense of cloud storage for information to be shared across several devices. Secondly, it is used to mean clouds of handwriting sample points in the function space representing curve traces. We “write on clouds” in both these senses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, L., Yang, J., Koedinger, K.R.: Evaluation of multimodal input for entering mathematical equations on the computer. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2005, pp. 1184–1187. ACM, New York (2005), http://doi.acm.org/10.1145/1056808.1056872

    Chapter  Google Scholar 

  2. Beran, B., van Ingen, C., Fatland, D.R.: Sciscope: a participatory geoscientific web application. Concurrency and Computation: Practice and Experience 22(17), 2300–2312 (2010)

    Article  Google Scholar 

  3. Chan, K.F., Yeung, D.Y.: Mathematical expression recognition: a survey. IJDAR 3(1), 3–15 (2000)

    Article  MATH  Google Scholar 

  4. Golubitsky, O., Watt, S.M.: Distance-based classification of handwritten symbols. International J. Document Analysis and Recognition 13(2), 133–146 (2010)

    Article  Google Scholar 

  5. Hu, R.: Portable implementation of digital ink: collaboration and calligraphy. Master’s thesis, University of Western Ontario, London, Canada (2009)

    Google Scholar 

  6. Labahn, G., Maclean, S., Marzouk, M., Rutherford, I., Tausky, D.: A preliminary report on the MathBrush pen-math system. In: Maple 2006 Conference, pp. 162–178 (2006)

    Google Scholar 

  7. Lamiroy, B., Lopresti, D., Korth, H., Heflin, J.: How carefully designed open resource sharing can help and expand document analysis research. In: Document Recognition and Retrieval XVIII - DRR 2011, vol. 7874. SPIE, San Francisco (2011)

    Google Scholar 

  8. MacLean, S., Labahn, G., Lank, E., Marzouk, M., Tausky, D.: Grammar-based techniques for creating ground-truthed sketch corpora. Int. J. Doc. Anal. Recognit. 14, 65–74 (2011), http://dx.doi.org/10.1007/s10032-010-0118-4

    Article  Google Scholar 

  9. Maplesoft: Maple 13 user manual (2009)

    Google Scholar 

  10. Mazalov, V., Watt, S.M.: Digital ink compression via functional approximation. In: Proc. of International Conference on Frontiers in Handwriting Recognition, pp. 688–694 (2010)

    Google Scholar 

  11. Mazalov, V., Watt, S.M.: A structure for adaptive handwriting recognition. In: Proc. of the International Conference on Frontiers in Handwriting Recognition (submitted, 2012)

    Google Scholar 

  12. Perrett, D., May, K., Yoshikawa, S.: Facial shape and judgments of female attractiveness. Nature 368, 239–242 (1994)

    Article  Google Scholar 

  13. Smirnova, E., Watt, S.M.: Communicating mathematics via pen-based computer interfaces. In: Proc. 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2008), pp. 9–18. IEEE Computer Society (September 2008)

    Google Scholar 

  14. Szalay, A.S.: The sloan digital sky survey and beyond. SIGMOD Rec. 37, 61–66 (2008), http://doi.acm.org/10.1145/1379387.1379407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazalov, V., Watt, S.M. (2012). Writing on Clouds. In: Jeuring, J., et al. Intelligent Computer Mathematics. CICM 2012. Lecture Notes in Computer Science(), vol 7362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31374-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31374-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31373-8

  • Online ISBN: 978-3-642-31374-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics