Skip to main content

Relaxations of Multilinear Convex Envelopes: Dual Is Better Than Primal

  • Conference paper
Experimental Algorithms (SEA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7276))

Included in the following conference series:

Abstract

Bilinear, trilinear, quadrilinear and general multilinear terms arise naturally in several important applications and yield nonconvex mathematical programs, which are customarily solved using the spatial Branch-and-Bound algorithm. This requires a convex relaxation of the original problem, obtained by replacing each multilinear term by appropriately tight convex relaxations. Convex envelopes are known explicitly for the bilinear case, the trilinear case, and some instances of the quadrilinear case. We show that the natural relaxation obtained using duality performs more efficiently than the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A Lagrangian approach to the pooling problem. Industrial and Engineering Chemistry Research 38, 1956–1972 (1999)

    Article  Google Scholar 

  2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs: I. Theoretical advances. Computers & Chemical Engineering 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  3. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Mathematics of Operations Research 8(2), 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: Alternate formulations and solution methods. Management Science 50(6), 761–776 (2004)

    Article  MATH  Google Scholar 

  5. Balram, S.: Crude transshipment via floating, production, storage and offloading platforms. Master’s thesis, Dept. of Chemical and Biomolecular Engineering, National University of Singapore (2010)

    Google Scholar 

  6. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optimization Methods and Software 24(4-5), 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belotti, P., Cafieri, S., Lee, J., Liberti, L., Miller, A.: On the composition of convex envelopes for quadrilinear terms. In: Pardalos, P., et al. (eds.) Optimization and Optimal Control. Springer, New York (submitted)

    Google Scholar 

  8. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software 24(4), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. Journal of Global Optimization 47, 661–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christof, T., Löbel, A.: The PORTA manual page. Technical Report v. 1.4.0, ZIB, Berlin (1997)

    Google Scholar 

  11. D’Ambrosio, C., Linderoth, J., Luedtke, J.: Valid Inequalities for the Pooling Problem with Binary Variables. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 117–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Management Science 15, 550–569 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fortet, R.: Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de Recherche Opérationelle 4, 17–26 (1960)

    Google Scholar 

  14. Foulds, L.R., Haughland, D., Jornsten, K.: A bilinear approach to the pooling problem. Optimization 24, 165–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goubault, E., Le Roux, S., Leconte, J., Liberti, L., Marinelli, F.: Static analysis by abstract interpretation: a mathematical programming approach. In: Miné, A., Rodriguez-Carbonell, E. (eds.) Proceedings of the 2nd International Workshop on Numerical and Symbolic Abstract Domains. Electronic Notes in Theoretical Computer Science, vol. 267(1), pp. 73–87. Elsevier (2010)

    Google Scholar 

  16. Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  17. Haverly, C.A.: Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP Bulletin 25, 19–28 (1978)

    Article  Google Scholar 

  18. IBM. ILOG CPLEX 12.2 User’s Manual. IBM (2010)

    Google Scholar 

  19. Knuth, D.E.: The Art of Computer Programming, Part II: Seminumerical Algorithms. Addison-Wesley, Reading (1981)

    Google Scholar 

  20. Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization: from Theory to Implementation, pp. 211–262. Springer, Berlin (2006)

    Google Scholar 

  21. Liberti, L.: Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO 43(1), 55–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in Mathematical Programming: A Computational Approach. In: Abraham, A., Hassanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Volume 3. SCI, vol. 203, pp. 153–234. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. International Transactions in Operational Research 18, 33–51 (2010)

    Article  MathSciNet  Google Scholar 

  24. Liberti, L., Lavor, C., Chaer Nascimento, M.A., Maculan, N.: Reformulation in mathematical programming: an application to quantum chemistry. Discrete Applied Mathematics 157, 1309–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liberti, L., Le Roux, S., Leconte, J., Marinelli, F.: Mathematical programming based debugging. In: Mahjoub, R. (ed.) Proceedings of the International Symposium on Combinatorial Optimization. Electronic Notes in Discrete Mathematics, vol. 36, pp. 1311–1318. Elsevier, Amsterdam (2010)

    Google Scholar 

  26. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems. Mathematical Programming 10, 146–175 (1976)

    Article  MathSciNet  Google Scholar 

  27. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: Facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic Publishers, Amsterdam (2003)

    Google Scholar 

  28. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: Facets of the convex and concave envelopes. Journal of Global Optimization 29, 125–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Misener, R., Floudas, C.A.: Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Industrial Engineering and Chemical Research 49, 5424–5438 (2010)

    Article  Google Scholar 

  30. Paatero, P.: The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics 8(4), 854–888 (1999)

    MathSciNet  Google Scholar 

  31. Rikun, A.: A convex envelope formula for multilinear functions. Journal of Global Optimization 10(4), 425–437 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers & Chemical Engineering 19(5), 551–566 (1995)

    Google Scholar 

  33. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering 23, 457–478 (1999)

    Article  Google Scholar 

  34. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Technical report, Facoltà di Economia e Commercio, Università di Roma “La Sapienza” (2007)

    Google Scholar 

  35. Williams, H.P.: Model Building in Mathematical Programming, 4th edn. Wiley, Chichester (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, A., Liberti, L. (2012). Relaxations of Multilinear Convex Envelopes: Dual Is Better Than Primal. In: Klasing, R. (eds) Experimental Algorithms. SEA 2012. Lecture Notes in Computer Science, vol 7276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30850-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30850-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30849-9

  • Online ISBN: 978-3-642-30850-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics