Skip to main content

A Decomposition Approach for Solving Critical Clique Detection Problems

  • Conference paper
Experimental Algorithms (SEA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7276))

Included in the following conference series:

  • 1494 Accesses

Abstract

The problem of detecting critical elements in a network involves the identification of a subset of elements (nodes, arcs, paths, cliques, etc.) whose deletion minimizes a connectivity measure over the induced network. This problem has attracted significant attention in recent years because of its applications in several fields such as telecommunications, social network analysis, and epidemic control. In this paper we examine the problem of detecting critical cliques (CCP). We first introduce a mathematical formulation for the CCP as an integer linear program. Additionally, we propose a two-stage decomposition strategy that first identifies a candidate clique partition and then uses this partition to reformulate and solve the problem as a generalized critical node problem (GCNP). To generate candidate clique partitions we test two heuristic approaches and solve the resulting (GCNP) using a commercial optimizer. We test our approach in a testbed of 13 instances ranging from 25 to 100 nodes.

This research is partially supported by NSF, DTRA and DURIP grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  2. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Computers and Operations Research 36(7), 2193–2200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boppana, R., Halldorsson, M.: Approximating maximum independent sets by excluding subgraphs. BIT 32, 180–196 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12, 21–34 (2006)

    Article  MATH  Google Scholar 

  5. Corley, H., Sha, D.Y.: Most vital links and nodes in weighted networks. Operations Research Letters 1(4), 157–160 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dessmark, A., Jansson, J., Lingas, A., Lundell, E.-M., Persson, M.: On the approximability of maximum and minimum edge clique partition problems. International Journal of Foundations of Computer Science 18 (2006, 2007)

    Google Scholar 

  7. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Computers and Operations Research 38(12), 1766–1774 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: Hardness and approximation. IEEE/ACM Transactions on Networking PP(99) (2011)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  10. Grötschel, M., Monma, C., Stoer, M.: Design of survivable networks. In: Ball, C.M.M.O., Magnanti, T.L., Nemhauser, G. (eds.) Network Models. Handbooks in Operations Research and Management Science, vol. 7, pp. 617–672. Elsevier (1995)

    Google Scholar 

  11. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Mathematical Programming 47, 367–387 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grubesic, T.H., Matisziw, T.C., Murray, A.T., Snediker, D.: Comparative approaches for assessing network vulnerability. International Regional Science Review 31(1), 88–112 (2008)

    Article  Google Scholar 

  13. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16, 372–378 (1973)

    Article  Google Scholar 

  14. Houck, D.J., Kim, E., O’Reilly, G.P., Picklesimer, D.D., Uzunalioglu, H.: A network survivability model for critical national infrastructures. Bell Labs Technical Journal 8(4), 153–172 (2004)

    Article  Google Scholar 

  15. Jenelius, E., Petersen, T., Mattsson, L.-G.: Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice 40(7), 537–560 (2006)

    Article  Google Scholar 

  16. Matisziw, T.C., Murray, A.T.: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure. Comput. Oper. Res. 36, 16–26 (2009)

    Article  MATH  Google Scholar 

  17. Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices: a polyhedral approach. Statistica Neerlandica 61(1), 35–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Palmer, C., Steffan, J.: Generating network topologies that obey power laws. In: Global Telecommunications Conference, GLOBECOM 2000, vol. 1, pp. 434–438. IEEE (2000)

    Google Scholar 

  19. Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems 19(2), 905–912 (2004)

    Article  Google Scholar 

  20. Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks (2011)

    Google Scholar 

  21. Tao, Z., Zhongqian, F., Binghong, W.: Epidemic dynamics on complex networks. Progress in Natural Science 16(5) (2005)

    Google Scholar 

  22. Wollmer, R.: Removing arcs from a network. Operations Research 12(6), 934–940 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walteros, J.L., Pardalos, P.M. (2012). A Decomposition Approach for Solving Critical Clique Detection Problems. In: Klasing, R. (eds) Experimental Algorithms. SEA 2012. Lecture Notes in Computer Science, vol 7276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30850-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30850-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30849-9

  • Online ISBN: 978-3-642-30850-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics