Skip to main content

The Complexity of Minor-Ancestral Graph Properties with Forbidden Pairs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7353))

Abstract

Robertson and Seymour (in work starting with [15]) demonstrated that any minor-ancestral graph property can be decided in polynomial time. Lewis and Yannakakis [14] showed that for any nontrivial node-hereditary graph property, the problem of given a graph, finding the size of the largest induced subgraph of the graph that has the property, is NP-hard. In this paper, we completely characterize those minor-ancestral properties for which the problem of deciding if a given graph contains a subgraph with the property that respects a given set of forbidden vertex pairs (i.e., if one vertex from a pair is in the subgraph then the other isn’t) is in P and for which such properties the problem is NP-complete. In particular, we show that if a given minor-ancestral property can be characterized by the containment of one of a finite set of graphs as a subgraph, the corresponding decision problem with forbidden vertex pairs is in P, otherwise its NP-complete. Unfortunately, we further show that the problem of deciding if a minor-ancestral property (presented as a set of characteristic minors) can be so characterized is NP-hard. Finally we observe that a similar characterization holds for the case of finding subgraphs satisfying a set of forbidden edge pairs and that our problems are all fixed parameter tractable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Shapira, A., Sudakov, B.: Additive approximation for edge-deletion problems. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 419–428. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  2. Asano, T., Hirata, T.: Edge-deletion and edge-contraction problems. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, pp. 245–254. ACM, New York (1982)

    Chapter  Google Scholar 

  3. Bondy, J.A.: Graph Theory With Applications. Elsevier Science Ltd. (1976)

    Google Scholar 

  4. Brady, A., Maxwell, K., Daniels, N., Cowen, L.J.: Fault tolerance in protein interaction networks: Stable bipartite subgraphs and redundant pathways. PLoS One 4(4), e5364 (2009)

    Google Scholar 

  5. Childs, A.M., Kothari, R.: Quantum query complexity of minor-closed graph properties. In: Proc. 28th Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics, vol. 9, pp. 661–672 (2010)

    Google Scholar 

  6. Diestel, R.: Graph Theory. Springer, Heidelberg (2010)

    Book  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  8. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35, 727–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabow, H.N., Maheshwari, S.N., Osterweil, L.J.: On Two Problems in the Generation of Program Test Paths. IEEE Transactions on Software Engineering SE-2(3), 227–231 (1976)

    Article  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S., Endre Tarjan, R.: The Planar Hamiltonian Circuit Problem is NP-Complete. SIAM Journal on Computing 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolman, P., Pangrác, O.: On the complexity of paths avoiding forbidden pairs. Discrete Applied Mathematics 157(13), 2871–2876 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krause, K.W., Goodwin, M.A., Smith, R.W.: Optimal software test planning through automated network analysis. TRW Systems Group, Redondo Beach (1973)

    Google Scholar 

  13. Krishnamoorthy, M.S., Deo, N.: Node-Deletion NP-Complete Problems. SIAM Journal on Computing 8(4), 619–625 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lewis, J., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph Minors. I. Excluding a Forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226. ACM, New York (1978)

    Chapter  Google Scholar 

  18. Yinnone, H.: On paths avoiding forbidden pairs of vertices in a graph. Discrete Appl. Math. 74, 85–92 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fox-Epstein, E., Krizanc, D. (2012). The Complexity of Minor-Ancestral Graph Properties with Forbidden Pairs. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds) Computer Science – Theory and Applications. CSR 2012. Lecture Notes in Computer Science, vol 7353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30642-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30642-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30641-9

  • Online ISBN: 978-3-642-30642-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics