
Building Wireless Sensor Networks Application
Using Sun SPOTs

Asadullah Shaikh1,2, Naveed Anjum3, Fahad Samad2, and Asadullah Shah1

1 Kulliyyah of Information and Communication Technology,
International Islamic University, Malaysia

asadullah.shaikh@live.iium.edu.my, asadullah@kict.iium.edu.my
2 Institute of Business and Technology, Pakistan

{asadullah,fahad.samad}@biztekian.com
3 University of Southern Denmark, Denmark

yoursanjum@gmail.com

Abstract. Wireless Sensor and Mobile ad-hoc Networks are character-
ized by their highly dynamic, multi-hop, and infrastructure-less nature.
In this dynamic environment, different nodes offering different services
may enter and leave the network at any time. Efficient and timely ser-
vice discovery is a requirement for good utilization of shared resources
in this kind of network. Service discovery is not a new problem. Many
academic and industrial researchers have proposed numerous solutions
(protocol/middleware) of service discovery for both wired and wireless
networks. The wireless sensor networks have several characteristics that
set them apart from the traditional wired networks. Hence, classical ser-
vice discovery protocols in sensor networks are not applicable. This paper
presents a service oriented architecture for autonomous wireless sensor
networks that provide various services at different levels.

1 Introduction

During the past decade, the speed and reliability of communication over wire-
less network has increased rapidly. Due to this increase, distributed computing
is now seen as an adaptable and economical way to enhance computing power
and share information. Recent advances in both the hardware and the software
have allowed for the emergence of purely distributed computing, in which each
entity can be either client or server. One area of great interest in distributed
systems is wireless ad-hoc network that allows collaboration in real time. Wire-
less ad-hoc networks are formed by a set of hosts that communicate with each
other over a wireless channel. Each node has the ability to communicate di-
rectly with another node (or several of them) in its physical neighborhood. They
may operate in a self-organized and decentralized manner. This allows to de-
velop a dynamic network infrastructure which makes these networks extremely

B.S. Chowdhry et al. (Eds.): IMTIC 2012, CCIS 281, pp. 466–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Building Wireless Sensor Networks Application Using Sun SPOTs 467

cost effective. Ad-hoc wireless networks can be used for many applications such
as the sensor-based system and the systems that are dynamically deployed for
sudden incidents. Wireless sensor networks consisting of individual sensor nodes
distributed over a given area are used to monitor some physical phenomenon
(temperature, humidity) in the environment. The importance of such networks
is increasing rapidly with advances in technology that result in smaller, cheaper,
and power-efficient devices. As a result, wireless sensor networks (WSN) have
become increasingly common in everyday applications. A fixed network structure
was required in the past for computers to collaborate. However due to advances
in wireless computing, network structures can now exercise significant flexibility.
Still, the limited capability in terms of memory capacity and processor speed
imposes difficulties upon wireless networking. Wireless sensor networks and its
applications have many uses in everyday human life ranging from health care
and logistics, through agriculture, forestry, civil and construction engineering, to
surveillance and military applications. The sensors applications are growing ever
larger in size and complexity. As sensor technology improves and the demand for
new applications grows, most of the currently deployed sensor network systems
will need to evolve over time. Currently, most of the sensor network applications
are being developed in the low level languages such as nesC and C at the sys-
tem level. This traditional low level approach cannot support to develop larger,
scalable, and flexible sensor applications.Higher level software methodologies are
needed to meet the scalability, flexibility, and portability requirements of mod-
ern sensor network systems. The computer networks are basically about using
services; multiple users (clients) regardless of their location may use a single
service. Hence, the networks connect the users and services. In distributed sys-
tems, clients use static service locations to discover services before using them.
Moreover, manually configured network addresses pointing to services are suf-
ficient. Wireless Sensor and Mobile ad-hoc Networks are characterized by their
highly dynamic, multi-hop, and infrastructure-less nature. In this dynamic en-
vironment, different nodes, offering different services, may enter and leave the
network at any time. Efficient and timely service discovery [1, 2, 3] is a require-
ment for good utilization of shared resources in these kind of networks.

The remainder of this paper focuses on a service oriented architecture for
autonomous wireless sensor networks that provide various services at different
levels. Section 2 describes the problem addressed in this paper. Section 3 focuses
on the architectural design along with proposed solution while Section 4 explores
the implementation environment. In Section 5, related work is presented. Finally,
Section 6 provides the conclusion.

1.1 Problem Statement

Service discovery is not a new problem. Many academic and industrial researchers
have proposed numerous solutions (protocol/middleware) of service discovery
for both wired and wireless networks. The traditional view of service discovery
within local area network is different from the scenarios in wireless ad-hoc net-
works. The wireless ad-hoc networks have several characteristics, as described



468 A. Shaikh et al.

above, that set them apart from the traditional wired networks. Due to these
differences, the classical service discovery protocols are not directly applicable
to wireless networks.

1.2 Aims and Objectives

The aim of this paper is to present a service oriented architecture [4] which will
handle autonomous sensors networks in which all entities of a network collab-
orate with each other through a suitable protocol. Furthermore, we design and
implement a service discovery prototype for wireless sensor networks which al-
lows sensors to take part in the service oriented environment where all nodes at
work offer different services at different levels (different attributes). The design
goal can be divided into following:

– Request/Reply base service discovery architecture which will handle au-
tonomous sensors network in which entities/nodes (Sun SPOT [5]) will leave
or join at any time.

– A protocol which allows Plug and Play sensor node (Sensor Integration)
– A scalable and dynamic wireless sensor network architecture which allows

autonomous system administration of sensor nodes and easy sensor data flow
management with nodes (Discovery/Routing).

– An architecture in which sensor nodes act as clients or service provider (ser-
vices) or both.

2 Problem Evaluation

Nowadays there are many uses for wireless sensor networks in almost every field.
As the sensor devices become cheaper and more powerful, we can now expect
the number of possible applications for wireless sensor networks to grow. The
wireless sensor systems need to evolve over time to support new needs and func-
tionality due to changes in requirements or improvements in sensor technology.
Throughout all these changes, the sensor network must maintain an acceptable
level of operation, since in some cases human lives may depend on it. Wireless
sensor networks must be reliable, scalable, and flexible to change. It is interest-
ing that still the sensor applications are mainly written at a low level, which
means at or near the system layer, where providing a scalable, flexible frame-
work is extremely difficult. Low-level application design tends to overlook proper
modularization, making development of complex application code very difficult.
These types of applications also tend to bind the system functionality to the
current set of resources. When resources or requirements change, engineers must
spend extra time, man-power, and money to keep the system up-to-date. Given
the wide spread use of traditional networking technologies, it may be surprising
how challenging even simple tasks become in the domain of the wireless sensors
networks. Nowadays, an application level developer expects certain services to
be provided by the operating system or by network protocols. However, due to



Building Wireless Sensor Networks Application Using Sun SPOTs 469

the resource constraints of sensor nodes neither of these can be taken for guaran-
teed. Problems arise mainly from developing applications comparatively closer
to the hardware on one side and the need for distributed algorithms in wireless
sensor networks on the other. Implementing the service discovery architecture
as an abstraction layer is widely accepted as a solution to this problem. The
key to success is to provide the application level developer with a programming
abstraction that empowers him to directly formulate the crucial parts of his ap-
plication in a way that naturally maps to the wireless sensor network platform.
In general, the service discovery in wireless ad-hoc environment is a difficult task.
Nevertheless, it is a crucial feature for the usability of wireless ad-hoc networks.
The service discovery allows devices to automatically locate network services
with their attributes and to advertise their own capabilities to the rest of the
network. To enable service discovery within wireless ad-hoc networks we face
many challenges like enabling the resource-constrained wireless devices to dis-
cover services dynamically and enabling the service discovery in large wireless
ad-hoc networks. In the simplest case, the service discovery mechanism needs to
work without any configuration, management or administration. There are dif-
ferent scenarios where the service discovery protocol is being used in the wireless
network environment. We would like to include a discussion on a few of these
scenarios.

– Scenario 1: Imagine that you find yourself in a taxi cab without your wallet.
Fortunately, you have a JINI technology enabled mobile phone, and your
mobile service provider uses JINI technology to deliver network-based ser-
vices tailored to your community. On your phone screen, you see a service
for the City Taxi Cab Company, so you download the electronic payment
application to authorize payment of your taxi cab fare. The cab company’s
payment system instantly recognizes the transaction and sends a receipt to
the printer in the taxi. You take the receipt and you are on your way.

– Scenario 2: Consider an intelligent, on-line overhead projector with a library
client. After identification to the system, the user may select a set of electron-
ically stored charts or other document(s) for viewing. Rather than bringing
foils to a meeting, the user accesses them through the LAN server in the
library.

– Scenario 3: Consider an insurance salesman who visits a client’s office. He
wants to brief new products and their options to the client which are stored
in his Windows CE Handheld PC. Since his Handheld PC has wireless net-
work and supports UPnP, it automatically discovers and uses an Ethernet
connected printer there without any network configuration and setup. He
can print whatever in his Handheld PC or from computers in his main office
and promote the new products.

Scenario 1 is a JINI demo scenario developed by Sun Microsystems and sce-
nario 2 is a Salutation scenario by IBM. The last one is a UPnP scenario by
Microsoft. At a glance, they seem to talk about the same stories: mobile devices,
zero-configuration [6] and impromptu community enabled by service discovery
protocols, and cooperation of the proximity network. Even though they work



470 A. Shaikh et al.

in the same way, these three service discovery protocols have different origins,
underlying technologies, flavors, and audiences. Since they see the problem at
different angles and take different approaches to it. It is a fact that not all the
service discovery architectures (protocols) provide the optimal solution. They
all have some advantages and disadvantages. Especially for the ad hoc wireless
infrastructure, it is very hard to come with the optimal solution due to the dy-
namic nature of the nodes. There are some challenges and requirements which
hinder the development of service discovery architecture.

3 Architectural Design

We have concluded some capabilities of Sun SPOT on which we have developed
our protocol. Every Sun SPOT can act as a mesh router which means that it
forwards (relay) the packets toward the other Sun SPOT(s), which it receive. The
Sun SPOT(s) use the AODV algorithm to determine the best route when the
communications between them are routed over more than one hop. To maintain
the route, every Sun SPOT use routing policies which can be enabled through
the RoutingPolicyManager. The Sun SPOT(s) can also have the capability to
broadcast the datagram packet. So we have approached our architecture design
with higher-level programming methodologies on application layer with support
from network layer’s (AODV protocol) capabilities of Sun SPOT. We sum up
with a directory-less architecture which is a suitable architecture for the resources
constrained devices such as sensor nodes. To enable reliable service allocation,
we apply the JINI lease mechanism in our architecture according to which a
service is requested for a time period and then granted for negotiated period
between the service user and the provider. In the following section, we propose
our service discovery architecture.

3.1 Proposed Solution

We have proposed a directory-less architecture which is based on the pull-model
(query the environment when service is required) service discovery approach. In
our architecture, each participating node has the capabilities to store its own lo-
cal services, deliver these services to other nodes, query the network for available
services offered by others, and use the services it discovers in the network. The
discovery process (we will call it service lookup process) is simple as the client
node (requester) broadcasts the request to search for the service and waits a re-
ply from any service provider. If a provider node (service provider) is found, then
the provider issues a reply back to the client. The reply includes the id of the
service provider, which is used for subsequent communication between the client
and the provider. In case the service provider is not found, no reply is received by
the client. The underlying network layer is responsible for routing the informa-
tion within the network. The nodes in the network automatically transmit any
received packets so that it is relayed to the entire network, including the nodes
that are out of range of the original requester. Note that there are maximum



Building Wireless Sensor Networks Application Using Sun SPOTs 471

preset numbers of nodes which are traversed (time to live-TTL). When a node
receives a request from the client during the service lookup phase, it checks the
availability of the requested service within itself. Depending on the availability
of service, the node issues a reply to the client. After a successful service lookup
phase, further communication between the client and the provider is initiated by
the client. It sends the lease and service binding request to the provider for the
requested service. The lease request contains the provider’s id so the node which
receives the lease request matches the provider id with its own id and takes the
necessary action in the form of lease reply. The provider sends the lease reply
along with the service binding to the client. After the successful service binding
phase, the client will have the service until the lease time expires. When the
lease expires, the current communication session will end. Because the nodes are
mobile, it is also likely that many link breakages along a route occur during the
lifetime of that route. The underlying network protocol is also responsible to
maintain a route for as long as the communication is active.

4 Implementation Environment

The prototype implementation is done in Java language. There are two reasons
to select Java. First, we have used the Sun SPOT as sensor device and it is a Java
embedded platform, more specifically Connected Limited Device Configuration
(CDLC) of Java Micro Edition (J2ME) platform with the MIDP-1.0 (Mobile In-
formation Device Profile) profile. Second, the Java language provides the feature
like modularity, reusability, extendibility, and robustness for developing applica-
tions. We have used the NetBeans IDE as the development environment, since
the NetBeans IDE is the default environment for developing the applications for
the Sun SPOTs. Indeed, the choice of IDE is arbitrary as long as it supports
ANT scripts. We utilize UML notations to explain the implementation of the
architecture. The necessary implementation is discussed further in this section.
All the experiments are done using the Sun SPOTs and having them all in the
same room, placed a few feet away from each other. The behavior could be dif-
ferent in different environments. The implementation consists of the following
Java packages:

– The XML parser org.xmlpull.v1 and org.kxml2.io packages contain the XML
parser [...] which we used to read the XML files.

– The service org.sunspotworld.service package contains the classes which model
services used in the system.

– The service framework org.sunspotworld package implementations of the
main service discovery architecture and it functionality.

As we have used the pre-developed XML parser, we will not provide the detailed
implementation of it.

4.1 Services

Service is the abstract base class for all the services. It defines the basic function-
ality of the service. Any service which needs to be activated must inherit from



472 A. Shaikh et al.

Fig. 1. UML Class Diagram of Service

this class. As shown in the UML class diagram in figure 1, the LightSensorSer-
vice and TemperatureService classes are inherited from Service. These classes
implement the actual functionality of the service e.g. activation and collection
of data etc.

4.2 Framework Overview

Here is a brief overview of all the classes which implement the Service framework:

– StartServiceMain is the Midlet class and it starts the application.
– SpotParticipant models the spot itself.
– ServiceReader reads the service types defined in the XML file.
– ServiceLoader takes the service type codes and instantiates Service objects

for each of them.
– ServiceRequest is a wrapper around the actual Service defining some addi-

tional info (e.g. lease time, interval).
– Packet wraps the data which we are sending between the spots. It is the

message (packet).
– PacketTypes is an interface which just defines the different types of packets.

We have five types of packet defined as:
– LOOKUP_PACKET is sent by a client when a new service is required.
– LOOKUP_REPLY_PACKET is sent by the service provider as a reply
of LOOK_UP_PACKET packet.
– LEASE_REQUEST_PACKET is sent by the client as a reply of
LOOKUP_REPLY_PACKET asking for the service data and lease time for
that service.
– LEASE_REPLY_PACKET is sent by the service provider with service
data and for a particular lease time.



Building Wireless Sensor Networks Application Using Sun SPOTs 473

– LEASE_EXPIRED_PACKET sends by the service provider when the
lease time is expired.

– PacketSender is responsible for the sending of packets.
– PacketReciever is responsible for the receiving of packets.
– Persistent is an interface which is implemented by every class which is sent

between the spots (in our case the class Packet) and has methods to persist
and load an object.

– PacketHandler performs the necessary action based upon the message (packet)
that spot has received. It is responsible for processing the messages and act-
ing upon them (e.g. sending a reply). It contains two inner classes:
– ServiceHandler starts a separate thread where it sends data to the spot
which has requested the service. It terminates when the lease time expires.
– TimeoutTimer is used to determine if a connection to a spot has been lost.

4.3 Working Procedure

When we start the application, it runs both at the service provider and the
service requester which means that a Sun SPOT can both offer and request
services. The application has two concurrent behaviors as Service Provider and
Service Requester. The UML class diagram in figure 2 shows the structure of
the classes.

Service Provider. The class SpotParticipant has the objects PacketReciever
and PacketSender. It uses the ServiceRequest and Service classes to implement
the list of either the requested services or the offered services. The PacketReciver
and PacketSender classes use to communicate with other Sun SPOT(s). These
classes communicate by sending and receiving data wrapped in Packet object.
Packets are handled in the SpotParticipant class using the PacketHandler class.

Service Requester (Client). As a service provider, the SpotParticipant mod-
els the Sun SPOT node as the service provider. After this, it reads the XML
file for the offered services, initiate the services, and load them into internal list
of offered services. The ServiceLoader class is responsible to load the services.
It has a loadservice method which instantiates the service objects. Now service
provider is ready and waits for any client for requested services.

Communication Protocol. This is a common functionality for the service
requester (client) and the service provider. PacketSender and PacketReciever are
responsible for interaction within the communication protocol. PacketReciever
runs in a separate thread and is constantly listening for new messages. The
PacketSender always broadcasts the packet along with the particular port while
the PacketReciever uses the server connection to receive the packet. When a
packet is received, the PacketReciever checks the receiver id of the packet and
compares it to the id of the SpotParticipant which owns the receiver. If they are
identical, it passes the packet to the SpotParticipant, otherwise it is dropped. If
the sender id is an empty string (i.e. a receiver is not specified) the packet was
meant as a broadcast message and it will be accepted by all the receivers.



474 A. Shaikh et al.

Fig. 2. UML Class Diagram of Service

Packet Handling. The packet handling is done by PacketHandler class. When
any kind of packet arrives as defines by the PacketTypes interface, this class
reads that packet and takes the necessary action based upon the information
in that packet. For example, on the arrival of a lookup packet, it replies with a
lookup reply packet. The lease is also handled by this class. It is handled by the
ServiceHandler which is an inner class of PacketHandler. The ServiceHandler
sends a lease expired packet to client when lease is expired. Additionally, the
inner class TimeoutTimer of PacketHandler class is responsible to take care of the
connection lost between the client and service provider. When the PacketHandler
receives the LOOKUP_REPLY_PACKET packet, it starts a timer countdown
and puts this communication session into the active services list of the client.
The timeout time of the timer is set to the interval of the service request plus 10
seconds. Every time it receives a LEASE_REPLY_PACKET packet, it resets
the timer. If the timer reaches 0 it is assumed that connection has been lost
and the session is removed from the list of active services. It means that if it
receives any data from that session after this, it will discard that data. Packet
loss (i.e., the loss of LEASE_REPLY_PACKET packets) is also handled by
the PacketHandler. The service provider sends a sequence number every time it
sends a LEASE_REPLY_PACKET packet and the client checks that sequence
number to see if any packets have been lost.



Building Wireless Sensor Networks Application Using Sun SPOTs 475

Fig. 3. Sequence Diagram

Communication Flow. To explain how the application works, we assume that
a service provider is already running and a client needs the service. The client
broadcasts the lookup packet which contains the packet type and service(s) and
waits for reply from any service provider. When any running service provider re-
ceives this lookup packet, it checks the requested service(s) in offered service list.
If it has the requested service(s), it replies back to client with the lookup reply
packet with service(s) and its own address. When client gets this packet then it
sends the lease request packet to the service provider in which the client asks for
the service for the particular time period. As a reply, the service provider sends
the requested services according to the lease time. When the lease expires, the
service provider sends the lease expired packet to the client and stops sending the
data. Figure 3 shows a sequence diagram (using UML notation) which illustrates
the flow of communication between the client and the service provider.

In case of a connection loss between client and service provider, the client will
wait for additional 10 seconds after the time interval set for the LEASE_REP
LY_PACKET packet has passed. The lease (which is with the server) will still
be active and the server will still send data over. The data will however be
disregarded by the client if it should receive it at some later point.



476 A. Shaikh et al.

Output. The output of the application can be obtained on the computer screen
if we attach the client node with computer. But in case of field area where no
computer is available, the output can be observed through the Sun SPOT(s) led
lights. The blue led light moving from led 1 to led 8 demonstrates packet sending
and red led light moving from led 1 to led 8 shows the packet receiving. The
blinking green led light expresses the service offered in case of a service provider.

5 Related Work

As a whole, analyzing, evaluating, and categorizing service discovery solutions
is a difficult task. Solutions are complex due to large number of responsibilities
and diverse design approaches. This section serves as a standardized way of
decomposing service discovery solutions and categorizes previous work in the
area.

The existing service discovery architectures can be divided into two main cat-
egories: directory-less architecture and directory-based architecture. A directory
is an entity that stores the information about services available in the network so
as to enable service discovery and invocation. In the directory-less architecture,
nodes do not distribute their service descriptions onto other nodes in the net-
work. A device interested in a special service typically sends its search message
to all reachable nodes. If one or more of these nodes can satisfy the request, a
response is sent back to the requester.

Konark [7] is a middleware architecture which is designed specifically for the
discovery and delivery of services in multi-hop ad hoc networks. It supports
both "push and pull" models for the service discovery mechanism, with a cache
in all devices. It defines an XML based service description language similar to
Web Services Description Language (WSDL) with regard to service description.
Konark uses multicast to advertise and discover services and allows for service
delivery by running a lightweight HTTP server on every node that hosts services.
Every node maintains a service registry, where it stores information about its own
services and also about services that other nodes provide. This registry is actually
a tree-structure with a number of levels that represent service classification.

PDP [8] is a distributed service discovery protocol designed for ad hoc net-
works. PDP takes into account inherent limitations of embedded devices such
as power-constrained batteries and processing capabilities in such a way that
the protocol reduces the number of messages sent through the network. PDP
gives priority to the replies of the less-constrained devices by allowing the oth-
ers to abort their answers. It also does away with the need of a central server
and it is a fully distributed protocol that merges characteristics of both pull
and push solutions. In PDP, devices maintain a cache of services previously an-
nounced, that is also used for the answers. All the messages are broadcast, and
all devices cooperate by coordinating their replies and sharing the information
in their caches. PDP takes into account different needs of the applications which
allows to further reduce the power consumption.



Building Wireless Sensor Networks Application Using Sun SPOTs 477

6 Conclusion

Service discovery is not a new problem. Many academic and industrial researchers
have proposed numerous solutions (protocol/middleware) of service discovery for
both wired and wireless networks. We have proposed the Service Oriented Ar-
chitecture (SOA) which will handle autonomous sensors networks in which all
entities of a network collaborate with each other through a suitable protocol.
Furthermore, we designed and implemented a service discovery prototype for
wireless sensor networks which allows sensors to take part in the service oriented
environment where all nodes of the network offer different services at different
levels (different attributes).

References

1. Seok, O., et al.: An integrated approach for efficient routing and service discov-
ery in mobile ad hoc networks. In: Second IEEE Consumer Communications and
Networking Conference, CCNC 2005, pp. 184–189 (2005)

2. Lu, Y.: An Adaptive Middleware to Overcome Service Discovery Heterogeneity in
Mobile Ad Hoc Environments. IEEE Distributed Systems Online, 1–1

3. Artail, H., Mershad, K.W., Hamze, H.: DSDM: A Distributed Service Discovery
Model for Manets. IEEE Transactions on Parallel and Distributed Systems, 1224–
1236

4. Bachara, P., Zielinski, K.: SOA-Compliant Programming Model for Intelligent Sen-
sor Networks – SCA-Based Solution. In: 12th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pp. 471–478 (2010)

5. Smith, R.B.: SPOTWorld and the Sun SPOT,” Information Processing in Sensor
Networks. In: 6th International Symposium on Information Processing in Sensor
Networks, IPSN 2007, pp. 565–566, 25-27 (2007)

6. Zero Configuration Networking (Zeroconf) (last checked on January 07, 2012),
http://www.zeroconf.org/

7. Helal, S., Desai, N., Verma, V., Lee, C.: Konark - A Service Discovery and Delivery
Protocol for Ad-hoc Networks. In: Proceedings of the Third IEEE Conference on
Wireless Communication Networks (WCNC), New Orleans (2003)

8. Campo, C., Munoz, M., Perea, J.C., Martin, A., Garcia-Rubio, C.: PDP and GSDL:
service discovery middleware to support spontaneous interactions in pervasive sys-
tems. In: Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Commu-
nications Workshops (2005)

http://www.zeroconf.org/

	Building Wireless Sensor Networks Application
Using Sun SPOTs
	Introduction
	Problem Statement
	Aims and Objectives

	Problem Evaluation
	Architectural Design
	Proposed Solution

	Implementation Environment
	Services
	Framework Overview
	Working Procedure
	Service Provider.
	Service Requester (Client).
	Communication Protocol.
	Packet Handling.
	Communication Flow.
	Output.


	Related Work
	Conclusion
	References





