Skip to main content

Automata-Based Symbolic Representations of Polyhedra

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7183))

Abstract

This work describes a data structure, the Implicit Real-Vector Automaton (IRVA), suited for representing symbolically polyhedra, i.e., regions of n-dimensional space defined by finite Boolean combinations of linear inequalities. IRVA can represent exactly arbitrary convex and non-convex polyhedra, including features such as open and closed boundaries, unconnected parts, and non-manifold components. In addition, they provide efficient procedures for deciding whether a point belongs to a given polyhedron, and determining the polyhedron component (vertex, edge, facet, …) that contains a point. An advantage of IRVA is that they can easily be minimized into a canonical form, which leads to a simple and efficient test for equality between represented polyhedra. We also develop an algorithm for computing Boolean combinations of polyhedra represented by IRVA.

This work is partially supported by the Interuniversity Attraction Poles program MoVES of the Belgian Federal Science Policy Office, and by the grants 2.4607.08 and 2.4545.11 of the Belgian Fund for Scientific Research (F.R.S.-FNRS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bieri, H., Nef, W.: Elementary Set Operations with d-Dimensional Polyhedra. In: Noltemeier, H. (ed.) CG-WS 1988. LNCS, vol. 333, pp. 97–112. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  2. Boigelot, B., Bronne, L., Rassart, S.: An Improved Reachability Analysis Method for Strongly Linear Hybrid Systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–177. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Boigelot, B., Brusten, J., Degbomont, J.-F.: Implicit real vector automata. In: Proc. INFINITY. Electronic Proceedings in Theoretical Computer Science, vol. 39, pp. 63–76 (2010)

    Google Scholar 

  4. Boigelot, B., Brusten, J., Leroux, J.: A Generalization of Semenov’s Theorem to Automata Over Real Numbers. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 469–484. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Transactions on Computational Logic 6(3), 614–633 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bournez, O., Maler, O., Pnueli, A.: Orthogonal Polyhedra: Representation and Computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 46–60. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Brusten, J.: On the sets of real vectors recognized by finite automata in multiple bases. Ph.D. thesis, University of Liège (2011)

    Google Scholar 

  8. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)

    Article  Google Scholar 

  9. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3D selective Nef complexes: Data structure, algorithms, optimized implementation and experiments. Comput. Geom. 38(1-2), 64–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halbwachs, N., Raymond, P., Proy, Y.E.: Verification of Linear Hybrid Systems by Means of Convex Approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Hopcroft, J.: An n logn algorithm for minimizing states in a finite automaton. Tech. rep., Stanford (1971)

    Google Scholar 

  13. Le Verge, H.: A note on Chernikova’s algorithm. Tech. rep., IRISA, Rennes (1992)

    Google Scholar 

  14. Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Processing Letters 79(3), 105–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Requicha, A.A.G.: Representations for rigid solids: Theory, methods, and systems. ACM Comput. Surv. 12(4), 437–464 (1980)

    Article  Google Scholar 

  16. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of constraint programming. Elsevier (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boigelot, B., Brusten, J., Degbomont, JF. (2012). Automata-Based Symbolic Representations of Polyhedra. In: Dediu, AH., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2012. Lecture Notes in Computer Science, vol 7183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28332-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28332-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28331-4

  • Online ISBN: 978-3-642-28332-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics