Skip to main content

Wake Structure and Vortex Development in Flight of Fruit Flies Using High-Speed Particle Image Velocimetry

  • Chapter
Nature-Inspired Fluid Mechanics

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 119))

Abstract

Understanding the dynamics of force and energy control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. In two-winged insects, such as flies, the fluid acceleration fields produced by each wing strongly interact during wing stroke reversals, when the wings reverse their flapping direction. The main finding of this study is that this wing-wake interaction potentially budgets the elevated energy expenditures required for wing flapping by actively lowering the kinetic energy in the wake. This is demonstrated by quantitative flow measurements in flying fruit flies using high-speed particle image velocimetry and measurements in robotic, model wings. Vorticity estimates suggest that, compared to rigid robotic wings, elastic fly wings recycle energy from detached leading edge vortices by a novel mechanism termed vortex trapping. This finding is of great interest in the field of biomimetic aircraft design because it may help to improve the endurance of the next generation of man-made wing-flapping aerial devices such as micro air vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birch, J.M., Dickinson, M.H.: Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412, 729–733 (2001)

    Article  Google Scholar 

  • Birch, J.M., Dickinson, M.H.: The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257–2272 (2003)

    Article  Google Scholar 

  • Brackenbury, J.: Wing movements in the bush cricket Tettigonia viridissima and the mantis Ameles spallanziana during natural leaping. J. Zool. Lond. 220, 593–602 (1990)

    Article  Google Scholar 

  • Brodsky, A.K.: Vortex formation in the tethered flight of the peacock butterfly Inachis io L (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol. 161, 77–95 (1991)

    Google Scholar 

  • Cooter, R.J., Baker, P.S.: Weis-Fogh clap and fling mechanism in Locusta. Nature 269, 53–54 (1977)

    Article  Google Scholar 

  • Daniel, T.L., Combes, S.A.: Flexible wings and fins: bending by inertial or fluid-dynamic forces? Integ. Comp. Biol. 42, 1044–1049 (2002)

    Article  Google Scholar 

  • Dickinson, M.H., Lehmann, F.-O., Sane, S.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Article  Google Scholar 

  • Dickinson, M.H., Palka, J.: Physiological properties, time of development, and central projection are correlated in the wing mechanoreceptors of Drosophila. J. Neurosci. 7, 4201–4208 (1987)

    Google Scholar 

  • Egelhaaf, M., Borst, A.: Motion computation and visual orientation in flies. Comp. Biochem. Physiol. 104A, 659–673 (1993)

    Article  Google Scholar 

  • Ellington, C.P.: The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305, 79–113 (1984)

    Article  Google Scholar 

  • Ennos, A.R.: The importance of torsion in the design of insect wings. J. Exp. Biol. 140, 137–160 (1988)

    Google Scholar 

  • Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495–498 (2003)

    Article  Google Scholar 

  • Götz, K.G.: Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J. Exp. Biol. 128, 35–46 (1987)

    Google Scholar 

  • Kern, R., van Hateren, J.H., Egelhaaf, M.: Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements. J. Exp. Biol. 209, 1251–1260 (2006)

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics. Dover, New York (1932)

    MATH  Google Scholar 

  • Lehmann, F.-O.: When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings. J. Exp. Biol. 211, 224–233 (2008)

    Article  Google Scholar 

  • Lehmann, F.-O., Gorb, S., Nazir, N., Schützner, P.: Elastic deformation and energy loss of flapping fly wings. J. Exp. Biol. 214, 2949–2961 (2011)

    Article  Google Scholar 

  • Maybury, W.J., Lehmann, F.-O.: The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J. Exp. Biol. 207, 4707–4726 (2004)

    Article  Google Scholar 

  • Nalbach, G.: Extremely non-orthogonal axes in a sense organ for rotation: behavioral analysis of the dipteran haltere system. Neurosci. 61, 149–163 (1994)

    Article  Google Scholar 

  • Saharon, D., Luttges, M.W.: Dragonfly unsteady aerodynamics: The role of the wing phase relationship in controlling the produced flows. AIAA J. 89-0832, 1–19 (1989)

    Google Scholar 

  • Sane, S.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003)

    Article  Google Scholar 

  • Sherman, A., Dickinson, M.H.: Summation of visual and mechanosensory feedback in Drosophila flight control. J. Exp. Biol. 207, 133–142 (2004)

    Article  Google Scholar 

  • Srygley, R.B., Thomas, A.L.R.: Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660–664 (2002)

    Article  Google Scholar 

  • Sun, M., Tang, J.: Unsteady aerodynamic force generation by a model fruit fly wing flapping motion. J. Exp. Biol. 205, 55–70 (2002)

    Google Scholar 

  • Taylor, G.K.: Mechanics and aerodynamics of insect flight control. Biol. Rev. 76, 449–471 (2001)

    Article  Google Scholar 

  • Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169–230 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz-Olaf Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Lehmann, FO. (2012). Wake Structure and Vortex Development in Flight of Fruit Flies Using High-Speed Particle Image Velocimetry. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics