Skip to main content

Influence of Wave-Like Riblets on Turbulent Friction Drag

  • Chapter
Nature-Inspired Fluid Mechanics

Abstract

This article reports on a numerical and experimental study of the turbulent drag on riblet surfaces, where the trapezoidal riblet grooves were formed in a wave-like sinusoidal or zigzag pattern. The aim was to enhance the drag-reducing capabilities of conventional, straight riblet grooves by an additional contribution that originates from the induced oscillating lateral flow component. By means of a comprehensive parameter study in an oil channel at Re between 10,000 and 30,000 and DNS simulations at Re τ =180, suitable waveform parameters are sought, with which wave-like riblets produce a drag reduction larger than that of their straight counterparts. For a riblet cross-section shape that is known to be optimal for straight grooves, no such beneficial drag modification could be demonstrated. With a riblet groove cross-section different from the optimum shape, an augmented attainable drag reduction in comparison to straight riblet grooves was found within a certain range of the waveform amplitude. The improvement amounts up to 1.3%-points in terms of drag reduction. Wave-like riblets with reduced riblet height never outperformed the drag reduction of straight riblet grooves of optimal cross-section form, but exhibit a similar drag reduction in the best cases investigated. It is shown that this favourable influence on the riblet-modified turbulent drag persists under a mild misalignment of the riblets to the main flow direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechert, D.W., Hoppe, G., van der Hoeven, J.G.T., Makris, R.: The Berlin oil channel for drag reduction research. Exp. Fluids 12, 251–260 (1992)

    Google Scholar 

  2. Bechert, D.W., Bruse, M., Hage, W., van der Hoeven, J.G.T., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid. Mech. 338, 59–87 (1997)

    Article  Google Scholar 

  3. Bechert, D.W.: Surface for a wall subject to a turbulent flow showing a main direction of flow. United States Patent No. 5.971.326 (1999)

    Google Scholar 

  4. Caretto, L.S., Gosman, A.D., Patankar, S.V., Spalding, D.B.: Two calculation procedures for steady, three-dimensional flows with recirculation. In: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Lecture Notes in Physics, vol. 19, pp. 60–68 (1973)

    Google Scholar 

  5. Grüneberger, R., Kramer, F., Hage, W., Meyer, R., Thiele, F., Wassen, E.: Experimental Investigation of Oscillating Riblets for Turbulent Drag Reduction. In: 17. DGLR-Fach Symposium der STAB, November 09-10, Berlin (2010) (to be published in NNFM)

    Google Scholar 

  6. Grüneberger, R., Hage, W.: Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings. Exp. Fluids 50(2), 363–373 (2011)

    Article  Google Scholar 

  7. Hage, W., Bechert, D.W., Bruse, M.: Yaw angle effects on optimized riblets. In: Thiede, P. (ed.) Proceedings of the CEAS/DragNet European Drag Reduction Conference, pp. 278–285 (2000) ISBN 3-540-41911-0

    Google Scholar 

  8. Jiménez, J., Moin, P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)

    Article  MATH  Google Scholar 

  9. Kramer, F., Thiele, F., Wassen, E.: DNS of oscillating riblets for turbulent drag reduction. In: Proceedings of TSFP6, Seoul, June 22-24 (2009)

    Google Scholar 

  10. Kramer, F., Thiele, F., Wassen, E.: Investigation of oscillating riblets for turbulent drag reduction. In: Proceedings of KATnet II, Bremen, May 12-14 (2009)

    Google Scholar 

  11. Kramer, F., Grüneberger, R., Thiele, F., Wassen, E., Hage, W., Meyer, R.: Wavy riblets for turbulent drag reduction AIAA-paper 10-4583 (2010)

    Google Scholar 

  12. Kramer, F., Thiele, F., Wassen, E.: Wavy riblet design to reduce friction drag by inducing lateral oscillation. In: European Drag Reduction and Flow Control Meeting, Kiew, September 02-04 (2010)

    Google Scholar 

  13. Mockett, C., Knacke, T., Thiele, F.: Detection of initial transient and estimation of statistical error in time-resolved turbulent flow data. In: Proceedings of ETMM8, Marseille (2010)

    Google Scholar 

  14. Obi, S., Peric, M., Scheuerer, G.: Second-moment calculation procedure for turbulent flows with collocated variable arrangement. AIAA Journal 29(4), 585–590 (1991)

    Article  Google Scholar 

  15. Peet, Y., Sagaut, P., Charron, Y.: Turbulent Drag Reduction using Sinusoidal Riblets with Triangular Cross-Section, AIAA paper 2008-3745 (2008)

    Google Scholar 

  16. Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. International Journal of Hydrogen Energy 34(21), 8964–8973 (2009)

    Article  Google Scholar 

  17. Quadrio, M., Luchini, P.: Method for reducing the viscous friction between a fluid and an object, International patent application PCT/EP2008/057622 (2008)

    Google Scholar 

  18. Stenzel, V., Wilke, Y., Hage, W.: Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Progress in Organic Coatings 70(4), 224–229 (2011)

    Article  Google Scholar 

  19. Szodruch, J.: Viscous drag reduction on transport aircraft, AIAA-paper 91-0685 (1991)

    Google Scholar 

  20. Walsh, M.J.: Drag characteristics of V-groove and transverse curvature riblets. In: Hough, G.R. (ed.) Viscous Flow Drag Reduction. Progress in Astronautics and Aeronautics, vol. 72. AIAA (1980)

    Google Scholar 

  21. Walsh, M.J., Lindemann, A.M.: Optimization and application of Riblets for Turbulent Drag Reduction, AIAA paper 1984-0347 (1984)

    Google Scholar 

  22. Warsop, C.: Current status and prospects for turbulent flow control. In: Thiede, P. (ed.) Proceedings of the CEAS/DragNet European Drag Reduction Conference, pp. 269–277 (2000) ISBN 3-540-41911-0

    Google Scholar 

  23. Wassen, E., Kramer, F., Thiele, F., Grüneberger, R., Hage, W., Meyer, R.: Turbulent Drag Reduction by Oscillating Riblets, AIAA paper 2008-4204 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Grüneberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Grüneberger, R., Kramer, F., Wassen, E., Hage, W., Meyer, R., Thiele, F. (2012). Influence of Wave-Like Riblets on Turbulent Friction Drag. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics