Skip to main content

On the Wake Flow Dynamics behind Harbor Seal Vibrissae – A Fluid Mechanical Explanation for an Extraordinary Capability

  • Chapter
Nature-Inspired Fluid Mechanics

Abstract

While hunting for prey in dark and turbid water the harbor seals use their mystacial vibrissae to follow the hydrodynamic trails left by prey fish. Sensing the minute velocity fluctuations in the trail is a challenge. In our research study we will answer the questions how mean and oscillating drag and lift forces are affected by the special body shape of the vibrissa and how the vortex structure in the wake is formed by a vibrissa to suppress self induced vibrations from the wake. For this purpose the wake flow of a harbor seal vibrissa was investigated by Stereo-Micro-PIV and with a detailed 3D direct numerical simulation. Using the proper orthogonal decomposition the most energetic structures of the wake flow could be extracted and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bearman, P.W.: Developments in the understanding of bluff body flows. JSME International Journal Series B-Fluids and Thermal Engineering 41(1), 103–114 (1998)

    Article  Google Scholar 

  • Bearman, P.W.: Understanding and predicting vortex-induced vibra-tions. Journal of Fluid Mechanics 634, 1–4 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Bearman, P.W., Owen, J.C.: Reduction of bluff-body drag and sup-pression of vortex shedding by the introduction of wavy separation lines. Journal of Fluids and Structures 12(1), 123–130 (1998)

    Article  Google Scholar 

  • Brede, M., Eckelmann, H., Rockwell, D.: On secondary vortices in the cylinder wake. Physics of Fluids 8(8), 2117–2124 (1996)

    Article  Google Scholar 

  • Brede, M., Witte, M., Leder, A., Miersch, L., Dehnhardt, G.: Stereo-μPIV investigation of the separated flow behind a 3D shaped vibrissae from an aquatic mammal. In: 14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2008)

    Google Scholar 

  • Cabral, B., Leedom, L.: Image vector fields using line integral convolution. In: International Conference on Computer Graphics and Interactive Techniques (1993)

    Google Scholar 

  • Dehnhardt, G., Mauck, B., Bleckmann, H.: Seal whiskers detect water movements. Nature 394(6690), 235–236 (1998)

    Article  Google Scholar 

  • Dehnhardt, G., Mauck, B., Hanke, W., Bleckmann, H.: Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293(5527), 102–104 (2001)

    Article  Google Scholar 

  • Hanke, W., Witte, M., Miersch, L., Brede, M., Oeffner, J., Michael, M., Hanke, F., Leder, A., Dehnhardt, G.: Harbor seal vibrissa morphology suppresses vortex-induced vibrations. Journal of Experimental Biology 213(15), 2665–2672 (2010)

    Article  Google Scholar 

  • Holmes, P.J., Lumley, J.L., Berkooz, G., Mattingly, J.C., Wittenberg, R.W.: Low-dimensional models of coherent structures in turbulence. Physics Reports-Review Section of Physics Letters 287(4), 338–384 (1997)

    MathSciNet  Google Scholar 

  • Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases (1988)

    Google Scholar 

  • Hyvärinen, H.: Diving in darkness: whiskers as sense organs of the ringed seal (Phoca hispida saimensis). Journal of Zoology 218(4), 663–678 (1989)

    Article  Google Scholar 

  • Jeong, J., Hussain, F.: On the Identification of a Vortex. Journal of Fluid Mechanics 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Leder, A.: Dynamics of fluid mixing in separated flows. Physics of Fluids A 3(7), 1741–1748 (1991)

    Article  Google Scholar 

  • Leder, A.: Abgelöste Strömungen, Physikalische Grundlagen. Vieweg-Verlag, Braunschweig, Wiesbaden, 214 S (1992) ISBN 3-528-06436-6

    Google Scholar 

  • Lumley, J.L., Yaglom, A.M., Tatarski, V.I.: The Structure of Inhomo-geneous Turbulent Flows. In: Atmospheric Turbulence and Radio Propagation, Nauka, pp. 166–178 (1967)

    Google Scholar 

  • Miersch, L., Hanke, W., Wieskotten, S., Hanke, F.D., Oeffner, J., Leder, A., Brede, M., Witte, M., Dehnhardt, G.: Flow sensing by pinniped whiskers. Philosophical Transactions of the Royal Society B-Biological Sciences 366(1581), 3077–3084 (2011)

    Article  Google Scholar 

  • Nguyen, N.-T., Wereley, S.T.: Fundamentals and Applications of Mi-crofluidics. Artec House, Boston (2002)

    Google Scholar 

  • Noack, B.: Niederdimensionale Galerkin Modelle für laminare und transitionelle freie Scherströmungen. Habilitation thesis (2006)

    Google Scholar 

  • Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures 17(1), 57–96 (2003)

    Article  MathSciNet  Google Scholar 

  • Owen, J.C., Bearman, P.W., Szewczyk, A.A.: Passive control of viv with drag reduction. Journal of Fluids and Structures 15(3-4), 597–605 (2001)

    Article  Google Scholar 

  • Reynolds, W.C., Hussain, A.K.M.: Mechanics of an Organized Wave in Turbulent Shear-Flow.3. Theoretical Models and Comparisons with Experiments. Journal of Fluid Mechanics 54, 263 (1972)

    Google Scholar 

  • Scruton, J.C.: On the wind-excited oscillations of stacks, towers and masts. In: Proceedings of the Symposium on Wind Effects on Buildings and Structures, pp. 798–836 (1965)

    Google Scholar 

  • Sirovich, L.: Turbulence and the Dynamics of Coherent Structures.1. Coherent Structures. Quarterly of Applied Mathematics 45(3), 561–571 (1987)

    MATH  MathSciNet  Google Scholar 

  • Tombazis, N., Bearman, P.W.: A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. Journal of Fluid Mechanics 330, 85–112 (1997)

    Article  Google Scholar 

  • Williamson, C.H.K.: Three-dimensional wake transition. Journal of Fluid Mechanics 328, 345–407 (1996)

    Article  MATH  Google Scholar 

  • Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics 28, 477–539 (1996)

    Article  Google Scholar 

  • Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annual Review of Fluid Mechanics 36, 413–455 (2004)

    Article  MathSciNet  Google Scholar 

  • Williamson, C.H.K., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics 96(6-7), 713–735 (2008)

    Article  Google Scholar 

  • Zdravkovich, M.M.: Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding. Journal of Wind Engineering and Industrial Aerodynamics 7(2), 145–189 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Witte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Witte, M. et al. (2012). On the Wake Flow Dynamics behind Harbor Seal Vibrissae – A Fluid Mechanical Explanation for an Extraordinary Capability. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics