Skip to main content

Development and Fabrication of Active Microstructures for Wave Control on Airfoils

  • Chapter
  • 2694 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 119))

Abstract

Transition of an airfoil’s boundary layer from the laminar to the turbulent flow regime increases the overall drag of an airplane significantly. The major origin of this transition are Tollmien-Schlichting (TS) waves. Similar to the dolphin’s skin, a system that is capable to dampen TS waves locally is proposed here. A surface wave can interfere destructively with TS waves and thus delay transition towards the edge of the airfoil. For this purpose, an actuator array is combined with a thin membrane. The presented actuators were developed and improved continuously so that all requirements for the dampening of TS waves are fulfilled. Several actuators are cascaded in a compact manner and combined with a membrane and an array of sensors. The system has proven in wind tunnel experiments to be capable of dampening TS waves successfully and delaying transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseeva, T.E., Semenov, B.N.: Hydrodynamic drag of the dolphin. J. Appl. Mech. and Tech. Phys. 12, 326–329 (1973)

    Article  Google Scholar 

  2. Babenko, V.V.: Some hydrodynamic peculiarity of dolphins swimming (Russian title: Nekotorye gidrodinamičeskie osobennosti pla-vanija del’finov). Bionika 3, 19–26 (1969)

    Google Scholar 

  3. Biancuzzi, G., Haller, D., Lemke, T., Wischke, M., Goldschmidtboeing, F., Woias, P.: A Dynamic Linearization Concept for Piezoelectric Actuators. IEEE Trans. on Ultrason., Ferroelectr. and Freq. Control 58, 689–697 (2011)

    Article  Google Scholar 

  4. Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid. Mech. 218, 171–223 (1990)

    Article  MATH  Google Scholar 

  5. Dogan, A., Uchino, K., Newnham, R.: Composite piezoelectric transducer with truncated conical endcaps “cymbal”. IEEE Trans. on Ultrason., Ferroelectr. and Freq. Control 44, 597–605 (1997)

    Article  Google Scholar 

  6. Friese, C., Woias, P., Goldschmidtboeing, F.: Piezoelectric Microactuators in Polymer-Composite Technology. In: Proc. IEEE Transducers Conf., Boston, USA (2003)

    Google Scholar 

  7. el Hak, M.G., Tsai, H.M.: Transition and turbulence control. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  8. Haller, D., Hempel, J., Paetzold, A., Losse, N., Peltzer, I., Nitsche, W., King, R., Woias, P.: A piezo-actuated closed loop MEMS system for active delay of transition. In: Proc. IEEE Transducers Conf., Denver, USA (2009)

    Google Scholar 

  9. Haller, D., Paetzold, A., Losse, N., Neiss, S., Peltzer, I., Nitsche, W., King, R., Woias, P.: Piezo-Polymer-Composite unimorph actuators for active cancellation of flow instabilities across airfoils. J. Intel. Mater. Syst. and Struct. 22, 465–478 (2011)

    Article  Google Scholar 

  10. Haller, D., Paetzold, A., Goldin, N., Neiss, S., Goldschmidtboeing, F., Nitsche, W., King, R., Woias, P.: Cymbal type piezo-polymer-composite actuators for active cancellation of flow instabilities on airfoils. In: Proc. IEEE Transducers Conf., Beijing, China (2011)

    Google Scholar 

  11. Just, E., Bingger, P., Woias, P.: Piezo-Polymer-Composite Actuators - A New Chance for Applications. In: Proc. ACTUATOR Conf., Bremen, Germany (2004)

    Google Scholar 

  12. Kachanov, Y.S.: Physical mechanisms of laminar-boundarylayer transition. Annu. Rev. Fluid Mech. 26, 411–482 (1994)

    Article  MathSciNet  Google Scholar 

  13. Schlichting, H., Gersten, K.: Boundary-Layer Theory, 8th edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  14. Sturzebecher, D., Anders, S., Nitsche, W.: The surface hot wire as a means of measuring mean and fluctuating wall shear stress. Exp. in Fluids 31, 294–301 (2001)

    Article  Google Scholar 

  15. Wischke, M., Haller, D., Goldschmidtboeing, F., Woias, P.: Assessing the elastostriction and the electrostriction parameter of bulk PZT ceramics. Smart Mater. and Struct. 19, 085003 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Haller, D., Neiss, S., Kroener, M., Woias, P. (2012). Development and Fabrication of Active Microstructures for Wave Control on Airfoils. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics