Skip to main content

Biomedical and Biochemical Tools of Förster Resonance Energy Transfer Enabled by Colloidal Quantum Dot Nanocrystals for Life Sciences

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization

Abstract

Semiconductor quantum nanocrystals (NCs) provide the ability to control and fine-tune peak emission wavelength using the size effect, with a broad optical absorption band (excitation window) increasing toward UV wavelength range. Quantum dots with different peak emission wavelengths can be excited at the same wavelength and offer longer fluorescence lifetimes, which make them desirable donor molecules for Förster resonance energy transfer (FRET)-based applications. In this chapter, the tools of FRET using these quantum dot nanocrystals in life science applications are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo SL, Zhang EL, Su YP, Cheng TM et al (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138

    Article  Google Scholar 

  2. Yuca E, Karatas AY, Seker UOS, Gungormus M et al (2011) In vitro labeling of hydroxyapatite minerals by an engineered protein. Biotechnol Bioeng 108:1021–1030

    Article  Google Scholar 

  3. Sameiro M, Goncalves T (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  4. Vendrell M, Lee JS, Chang YT (2010) Diversity-oriented fluorescence library approaches for probe discovery and development. Curr Opin Chem Biol 14:383–389

    Article  Google Scholar 

  5. Margulies D, Hamilton AD (2010) Combinatorial protein recognition as an alternative approach to antibody-mimetics. Curr Opin Chem Biol 14:705–712

    Article  Google Scholar 

  6. Sapsford KE, BertiI L, Medintz L (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562–4588

    Article  Google Scholar 

  7. Mutlugun E, Nizamoglu S, Demir HV (2009) Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution. Appl Phys Lett 95:033106

    Article  ADS  Google Scholar 

  8. Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255

    Article  Google Scholar 

  9. Ratzke C, Mickler M, Hellenkamp B, Buchner J et al (2010) Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci USA 107:16101–16106

    Article  ADS  Google Scholar 

  10. Huttunen R, Shweta ME, Lahdenranta M et al (2011) Single-label time-resolved luminescence assay for estrogen receptor-ligand binding. Anal Biochem 415:27–31

    Article  Google Scholar 

  11. Rajdev P, Mondol T, Makhal A, Pal SK (2011) Simultaneous binding of anti-tuberculosis and anti-thrombosis drugs to a human transporter protein: a FRET study. J Photochem Photobiol B-Biol 103:153–158

    Article  Google Scholar 

  12. Liu S, He J, Jin HL, Yang F et al (2011) Enhanced dynamic range in a genetically encoded Ca(2+) sensor. Biochem Biophys Res Commun 412:155–159

    Article  Google Scholar 

  13. Breton B, Sauvageau E, Zhou J, Bonin H et al (2010) Multiplexing of multicolor bioluminescence resonance energy transfer. Biophys J 99:4037–4046

    Article  Google Scholar 

  14. Li M, Cushing SK, Wang QY, Shi XD et al (2011) Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J Phys Chem Lett 2:2125–2129

    Article  Google Scholar 

  15. Michalet X, Pinaud FF, Bentolila LA, Tsay JM et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  ADS  Google Scholar 

  16. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  17. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  Google Scholar 

  18. Hildebrandt N (2011) Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5:5286–5290

    Article  Google Scholar 

  19. Mattoussi H (2010) In: Klimov VI (ed) Nanocrystal quantum dots, Ch 10. CRC Press, pp 369–393

    Google Scholar 

  20. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  ADS  Google Scholar 

  21. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  22. Pandey G, Dixit S (2011) Growth mechanism and optical properties determination of CdS nanostructures. J Phys Chem C 115:17633–17642

    Article  Google Scholar 

  23. Miao SD, Hickey SG, Rellinghaus B, Waurisch C et al (2010) Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared. J Am Chem Soc 132:5613–5615

    Article  Google Scholar 

  24. Rogach AL, Gaponik N (2008) In: Semiconductor nanocrystal quantum dots. Synthesis, assembly, spectroscopy and applications (Rogach AL ed). Springer, pp 73–99

    Google Scholar 

  25. Gupta S, Uhlmann P, Agrawal M, Lesnyak V et al (2008) Covalent immobilization of quantum dots on macroscopic surfaces using poly(acrylic acid) brushes. J Mater Chem 18:214–220

    Article  Google Scholar 

  26. Gaponenko SV, Ozel T, Nizamoglu S, Sefunc MA et al (2011) Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano 5:1328–1334

    Article  Google Scholar 

  27. Sun HZ, Ning Y, Zhang H, Zhang JH et al (2009) Synthesis and characterization of CdTe nanoparticle/polymer functional composites. J Nanosci Nanotechno 9:7374–7378

    Google Scholar 

  28. Osovsky R, Shavel A, Gaponik N, Amirav L et al (2005) Electrostatic and covalent interactions in CdTe nanocrystalline assemblies. J Phys Chem B 109:20244–20250

    Article  Google Scholar 

  29. Qiu T, Zhao D, Zhou G, Liang Y et al (2010) A positively charged QDs-based FRET probe for micrococcal nuclease detection. Analyst 135:2394–2399

    Article  ADS  Google Scholar 

  30. Lee J, Choi Y, Kim J, Park E et al (2009) Positively charged compact quantum dot-DNA complexes for detection of nucleic acids. Chemphyschem 10:806–811

    Article  Google Scholar 

  31. Kim YS, Jurng J (2011) Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection. Analyst 136:3720–3724

    Article  ADS  Google Scholar 

  32. Lu H, Schops O, Woggon U, Niemeyer CM (2008) Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. J Am Chem Soc 130:4815–4827

    Article  Google Scholar 

  33. He ZK, Qiu T, Zhao D, Zhou GH et al (2010) A positively charged QDs-based FRET probe for micrococcal nuclease detection. Analyst 135:2394–2399

    Article  ADS  Google Scholar 

  34. Liu W, Howarth M, Greytak AB, Zheng Y et al (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284

    Article  Google Scholar 

  35. Mattoussi H, Susumu K, Uyeda HT, Medintz IL et al (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996

    Article  Google Scholar 

  36. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123

    Article  Google Scholar 

  37. Lee CM, Jang D, Cheong SJ, Kim EM et al (2010) Surface engineering of quantum dots for in vivo imaging. Nanotechnology 21:285102

    Article  ADS  Google Scholar 

  38. Peelle BR, Krauland EM, Wittrup KD, Belcher AM (2005) Design criteria for engineering inorganic material-specific peptides. Langmuir 21:6929–6933

    Article  Google Scholar 

  39. Grailhe R, Park HY, Kim K, Hong S et al (2010) Compact and versatile nickel-nitrilotriacetate-modified quantum dots for protein imaging and forster resonance energy transfer based assay. Langmuir 26:7327–7333

    Article  Google Scholar 

  40. Medintz IL, Boeneman K, Mei BC, Dennis AM et al (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    Article  Google Scholar 

  41. Medintz IL, Boeneman K, Deschamps JR, Buckhout-White S et al (2010) Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. ACS Nano 4:7253–7266

    Article  Google Scholar 

  42. Kizek R, Ryvolova M, Chomoucka J, Janu L et al (2011) Biotin-modified glutathione as a functionalized coating for bioconjugation of CdTe-based quantum dots. Electrophoresis 32:1619–1622

    Google Scholar 

  43. Nikiforov TT, Beechem JM (2006) Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. Anal Biochem 357:68–76

    Article  Google Scholar 

  44. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Google Scholar 

  45. Demir HV, Seker US, Ozel UOST (2011) Peptide-mediated constructs of quantum dot nanocomposites for enzymatic control of nonradiative energy transfer. Nano Lett 11:1530–1539

    Article  ADS  Google Scholar 

  46. Willner I, Gill R, Zayats M (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  Google Scholar 

  47. Cicek N, Nizamoglu S, Ozel T, Mutlugun E et al. (2009) Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers. Appl Phys Lett 94:061105

    Google Scholar 

  48. Krull UJ, Algar WR, Tavares AJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    Article  Google Scholar 

  49. Su XG, Li YB, Ma Q, Wang XY (2007) Fluorescence resonance energy transfer between two quantum dots with immunocomplexes of antigen and antibody as a bridge. Luminescence 22:60–66

    Article  Google Scholar 

  50. Su XG, Ma Q, Wang XY, Wan Y et al (2005) Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system. Talanta 67:1029–1034

    Article  Google Scholar 

  51. MattoussiI H, Medintz L (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    Article  Google Scholar 

  52. Lee EK, Wei OD, Lee M, Yu X et al (2006) Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer. Anal Biochem 358:31–37

    Article  Google Scholar 

  53. Zhao YD, Li YQ, Wang JH, Zhang HL et al (2010) High-sensitivity quantum dot-based fluorescence resonance energy transfer bioanalysis by capillary electrophoresis. Biosens Bioelectron 25:1283–1289

    Article  MathSciNet  Google Scholar 

  54. Goldman ER, Medintz IL, Whitley JL, Hayhurst A et al (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127:6744–6751

    Article  Google Scholar 

  55. Rogach AL, Sukhanova A, Susha AS, Bek A et al (2007) Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases. Nano Lett 7:2322–2327

    Article  ADS  Google Scholar 

  56. Zhou DJ, Piper JD, Abell C, Klenerman D et al. (2005) Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem Commun 38:4807–4809

    Google Scholar 

  57. Cady NC, Strickland AD, Batt CA (2007) Optimized linkage and quenching strategies for quantum dot molecular beacons. Mol Cell Probe 21:116–124

    Article  Google Scholar 

  58. Wu CS, Cupps JM, Fan XD (2009) Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer. Nanotechnology 20:305502

    Google Scholar 

  59. Ozkan M, Kim JH, Chaudhary S (2007) Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection. Nanotechnology 18:195105

    Google Scholar 

  60. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    Article  ADS  Google Scholar 

  61. Deng L, Chen Z, Li G, Zhang L et al (2008) A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal Bioanal Chem 392:1185–1188

    Article  Google Scholar 

  62. Johnson LW, Zhang CY (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055

    Article  Google Scholar 

  63. Oh MK, Kim GI, Kim KW, Sung YM (2009) The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20:175503

    Google Scholar 

  64. Zhou D, Ying L, Hong X, Hall EA et al (2008) A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection. Langmuir 24:1659–1664

    Article  Google Scholar 

  65. Jiang G, Susha AS, Lutich AA, Stefani FD et al (2009) Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 3:4127–4131

    Article  Google Scholar 

  66. Cheng AKH, Su HP, Wang A, Yu HZ (2009) Aptamer-based detection of epithelial tumor marker Mucin 1 with quantum dot-based fluorescence readout. Anal Chem 81:6130–6139

    Article  Google Scholar 

  67. Wang LB, Xu LG, Zhu YY, Ma W et al (2011) Sensitive and specific DNA detection based on nicking endonuclease-assisted fluorescence resonance energy transfer amplification. J Phys Chem C 115:16315–16321

    Article  Google Scholar 

  68. Carraway HE, Bailey VJ, Easwaran H, Zhang Y et al (2009) MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res 19:1455–1461

    Article  Google Scholar 

  69. Suzuki M, Husimi Y, Komatsu H, Suzuki K et al (2008) Quantum dot FRET Biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. J Am Chem Soc 130:5720–5725

    Article  Google Scholar 

  70. Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-conjugated hybridization probes for preliminary screening of siRNA sequences. J Am Chem Soc 127:11328–11335

    Article  Google Scholar 

  71. Johnson LW, Zhang CY (2007) Quantifying RNA – peptide interaction by single-quantum dot-based nanosensor: an approach fair drug screening. Anal Chem 79:7775–7781

    Article  Google Scholar 

  72. Johnson LW, Zhang CY (2006) Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Anal Chem 78:5532–5537

    Article  Google Scholar 

  73. Sriram R, Yadav AR, Mace CR, Miller BL (2011) Validation of arrayed imaging reflectometry biosensor response for protein-antibody interactions: cross-correlation of theory, experiment, and complementary techniques. Anal Chem 83:3750–3757

    Article  Google Scholar 

  74. Amniai L, Lippens G, Landrieu I (2011) Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach. Biochem Biophys Res Commun 412:743–746

    Article  Google Scholar 

  75. Garai K, Frieden CC (2010) The association-dissociation behavior of the ApoE proteins: kinetic and equilibrium studies. Biochemistry 49:9533–9541

    Article  Google Scholar 

  76. Sarkar R, Narayanan SS, Palsson LO, Dias F et al (2007) Direct conjugation of semiconductor nanocrystals to a globular protein to study protein-folding intermediates. J Phys Chem B 111:12294–12298

    Article  Google Scholar 

  77. Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27

    Article  Google Scholar 

  78. Medintz IL, Konnert JH, Clapp AR, Stanish I et al (2004) A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc Natl Acad Sci USA 101:9612–9617

    Article  ADS  Google Scholar 

  79. Medintz IL, Clapp AR, Mattoussi H, Goldman ER et al (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638

    Article  ADS  Google Scholar 

  80. Chang E, Miller JS, Sun JT, Yu WW et al (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321

    Article  Google Scholar 

  81. Liu HY, Liang GX, Abdel-Halim ES, Zhu JJ (2011) A sensitive and selective quantum dots-based FRET biosensor for the detection of cancer marker type IV collagenase. Anal Methods 3:1797–1801

    Article  Google Scholar 

  82. Pons T, Medintz IL, Sapsford KE, Higashiya S et al (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett 7:3157–3164

    Article  ADS  Google Scholar 

  83. Shi LF, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128:10378–10379

    Article  Google Scholar 

  84. Shi LF, Rosenzweig N, Rosenzweig Z (2007) Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Anal Chem 79:208–214

    Article  Google Scholar 

  85. Sapsford KE, Granek J, Deschamps JR, Boeneman K et al (2011) Monitoring botulinum neurotoxin A activity with peptide-functionalized quantum dot resonance energy transfer sensors. ACS Nano 5:2687–2699

    Article  Google Scholar 

  86. Prasuhn DE, Feltz A, Blanco-Canosa JB, Susumu K et al (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano 4:5487–5497

    Article  Google Scholar 

  87. Biswas P, Cella LN, Kang SH, Mulchandani A et al (2011) A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. Chem Commun 47:5259–5261

    Article  Google Scholar 

  88. Ghadiali JE, Cohen BE, Stevens MM (2010) Protein kinase-actuated resonance energy transfer in quantum dot-peptide conjugates. ACS Nano 4:4915–4919

    Article  Google Scholar 

  89. Ghadiali JE, Lowe SB, Stevens MM (2011) Quantum-dot-based FRET detection of histone acetyltransferase activity. Angew Chem Int Ed 50:3417–3420

    Article  Google Scholar 

  90. Xu CJ, Xing BG, Rao HH (2006) A self-assembled quantum dot probe for detecting beta-lactamase activity. Biochem Biophys Res Commun 344:931–935

    Article  Google Scholar 

  91. Skajaa T, Zhao YM, van den Heuvel DJ, Gerritsen HC et al (2010) Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via forster resonance energy transfer. Nano Lett 10:5131–5138

    Article  ADS  Google Scholar 

  92. Rakovich A, Sukhanova A, Bouchonville N, Lukashev E et al (2010) Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Nano Lett 10:2640–2648

    Article  ADS  Google Scholar 

  93. Seker UOS, Ozel T, Demir HV (2011) Peptide-mediated constructs of quantum dot nanocomposites for enzymatic control of nonradiative energy transfer. Nano Lett 11:1530–1539

    Article  ADS  Google Scholar 

  94. Harashima H, Shaheen SM, Akita H, Yamashita A et al (2011) Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET. Nucleic Acids Res 39:E48–U108

    Article  Google Scholar 

  95. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S et al (2007) Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  ADS  Google Scholar 

  96. Kang WJ, Ko MH, Lee DS, Kim S (2009) Bioimaging of geographically adjacent proteins in a single cell by quantum dot-based fluorescent resonance energy transfer. Proteomics Clin Appl 3:1383–1388

    Google Scholar 

  97. Wang QL, Chen B, Liu P, Zheng MZ et al (2009) Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 284:12000–12007

    Article  Google Scholar 

  98. Choi Y, Kim K, Hong S, Kim H et al (2011) Intracellular protein target detection by quantum dots optimized for live cell imaging. Bioconjug Chem 22:1576–1586

    Article  Google Scholar 

  99. Srinivasan C, Siddiqui S, Silbart LK, Papadimitrakopoulos F et al (2009) Dual fluorescent labeling method to visualize plasmid DNA degradation. Bioconjug Chem 20:163–169

    Article  Google Scholar 

  100. Delehanty JB, MattoussiI H, Medintz L (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105

    Article  Google Scholar 

  101. Su YY, Peng F, Jiang ZY, Zhong YL et al (2011) In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials 32:5855–5862

    Article  Google Scholar 

  102. Clift MJD, Brandenberger C, Rothen-Rutishauser B, Brown DM et al (2011) The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology 286:58–68

    Article  Google Scholar 

  103. Qu Y, Li W, Zhou YL, Liu XF et al (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183

    Article  Google Scholar 

  104. Reddy KM, Feris K, Bell J, Wingett DG, et al. (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett, 90:213903

    Google Scholar 

  105. Xie RG, Chen K, Chen XY, Peng XG (2008) InAs/InP/ZnSe Core/Shell/Shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res 1:457–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urartu Özgür Şafak Şeker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Şeker, U.Ö.Ş., Demir, H.V. (2013). Biomedical and Biochemical Tools of Förster Resonance Energy Transfer Enabled by Colloidal Quantum Dot Nanocrystals for Life Sciences. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics