Skip to main content

Computational Study on Bidimensionality Theory Based Algorithm for Longest Path Problem

  • Conference paper
Algorithms and Computation (ISAAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7074))

Included in the following conference series:

Abstract

Bidimensionality theory provides a general framework for developing subexponential fixed parameter algorithms for NP-hard problems. In this framework, to solve an optimization problem in a graph G, the branchwidth \({\mathop{\rm bw}}(G)\) is first computed or estimated. If \({\mathop{\rm bw}}(G)\) is small then the problem is solved by a branch-decomposition based algorithm which typically runs in polynomial time in the size of G but in exponential time in \({\mathop{\rm bw}}(G)\). Otherwise, a large \({\mathop{\rm bw}}(G)\) implies a large grid minor of G and the problem is computed or estimated based on the grid minor. A representative example of such algorithms is the one for the longest path problem in planar graphs. Although many subexponential fixed parameter algorithms have been developed based on bidimensionality theory, little is known on the practical performance of these algorithms. We report a computational study on the practical performance of a bidimensionality theory based algorithm for the longest path problem in planar graphs. The results show that the algorithm is practical for computing/estimating the longest path in a planar graph. The tools developed and data obtained in this study may be useful in other bidimensional algorithm studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bian, Z., Gu, Q.P.: Computing Branch Decomposition of Large Planar Graphs. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 87–100. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bian, Z., Gu, Q.P., Marzban, M., Tamaki, H., Yoshitake, Y.: Empirical study on branchwidth and branch decomposition of planar graphs. In: Proc. of the 9th SIAM Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 152–165 (2008)

    Google Scholar 

  3. Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. Algorithmica 51(1), 81–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byers, T.H., Waterman, M.S.: Determining all optimal and near-optimal solutions when solving shortest path problems by dynamic programming. Operations Research 32(6), 1381–1384 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Fraysseix, H., de Mendez, P.O.: PIGALE-Public Implementation of a Graph Algorithm Library and Editor. SourceForge project page, http://sourceforge.net/projects/pigale

  6. Demaine, E., Fomin, F., Hajiaghayi, M., Thilikos, D.: Bidimensional parameters and local treewidth. SIAM J. Discret. Math. 18(3), 501–511 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM) 52(6), 866–893 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demaine, E.D., Hajiaghayi, M.T.: Linearity of grid minors in treewidth with applications through bidimensionality. Combinatorica 28(1), 19–36 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demaine, E.D., Hajiaghayi, M.T., Thilikos, D.M.: The bidimensional theory of bounded-genus graphs. SIAM Journal on Discrete Mathematics 20(2), 357–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. Algorithmica 58(3), 790–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Gu, Q.P., Tamaki, H.: Improved bounds on the planar branchwidth with respect to the largest grid minor size. Algorithmica (to appear, 2011)

    Google Scholar 

  14. Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. ACM Transactions on Algorithms (TALG) 4(3), 1–13 (2008)

    Article  MathSciNet  Google Scholar 

  15. Marzban, M., Gu, Q.P., Jia, X.: Computational study on planar dominating set problem. Theoretical Computer Science 410(52), 5455–5466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press (1999)

    Google Scholar 

  17. Reinelt, G.: TSPLIB–A traveling salesman problem library. INFORMS Journal on Computing 3(4), 376 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B 62(2), 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C.: Computational study on bidimensionality theory based algorithms. MSc Thesis, Simon Fraser University (August 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Gu, QP. (2011). Computational Study on Bidimensionality Theory Based Algorithm for Longest Path Problem. In: Asano, T., Nakano, Si., Okamoto, Y., Watanabe, O. (eds) Algorithms and Computation. ISAAC 2011. Lecture Notes in Computer Science, vol 7074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25591-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25591-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25590-8

  • Online ISBN: 978-3-642-25591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics