Skip to main content

Fully Retroactive Approximate Range and Nearest Neighbor Searching

  • Conference paper
Algorithms and Computation (ISAAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7074))

Included in the following conference series:

Abstract

We describe fully retroactive dynamic data structures for approximate range reporting and approximate nearest neighbor reporting. We show how to maintain, for any positive constant d, a set of n points in ℝd indexed by time such that we can perform insertions or deletions at any point in the timeline in O(logn) amortized time. We support, for any small constant ε > 0, (1 + ε)-approximate range reporting queries at any point in the timeline in O(logn + k) time, where k is the output size. We also show how to answer (1 + ε)-approximate nearest neighbor queries for any point in the past or present in O(logn) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, U.A., Blelloch, G.E., Tangwongsan, K.: Non-oblivious retroactive data structures. Tech. Rep. CMU-CS-07-169, Carnegie Mellon University (2007)

    Google Scholar 

  2. Arya, S., da Fonseca, G.D., Mount, D.M.: A Unified Approach to Approximate Proximity Searching. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 374–385. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pp. 271–280 (1993)

    Google Scholar 

  4. Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theory Appl. 17, 135–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45, 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atallah, M.J.: Some dynamic computational geometry problems. Computers and Mathematics with Applications 11(12), 1171–1181 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bern, M., Eppstein, D., Teng, S.-H.: Parallel Construction of Quadtrees and Quality Triangulations. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 188–199. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  8. Blelloch, G.E.: Space-efficient dynamic orthogonal point location, segment intersection, and range reporting. In: 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 894–903 (2008)

    Google Scholar 

  9. Chan, T.M.: Approximate nearest neighbor queries revisited. Discrete and Computational Geometry 20, 359–373 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T.M.: A minimalist’s implementation of an approximate nearest neighbor algorithm in fixed dimensions (2006) (manuscript)

    Google Scholar 

  11. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(3), 133–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1, 163–191 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demaine, E.D., Iacono, J., Langerman, S.: Retroactive data structures. ACM Trans. Algorithms 3 (May 2007)

    Google Scholar 

  14. Derryberry, J., Sheehy, D., Sleator, D.D., Woo, M.: Achieving spatial adaptivity while finding approximate nearest neighbors. In: Proceedings of the 20th Canadian Conference on Computational Geometry, CCCG 2008, pp. 163–166 (2008)

    Google Scholar 

  15. Dickerson, M.T., Eppstein, D., Goodrich, M.T.: Cloning Voronoi Diagrams Via Retroactive Data Structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 362–373. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38, 86–124 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duncan, C.A., Goodrich, M.T., Kobourov, S.: Balanced aspect ratio trees: combining the advantages of k-d trees and octrees. J. Algorithms 38, 303–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: A simple dynamic data structure for multidimensional data. In: 21st ACM Symp. on Computational Geometry (SCG), pp. 296–305 (2005)

    Google Scholar 

  19. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data structure for multidimensional data. In: 21st ACM Symp. on Computational Geometry, pp. 296–305 (2005)

    Google Scholar 

  20. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar subdivisions. ACM Trans. Algorithms 5, 28:1–28:51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goodrich, M.T., Simons, J.A.: Fully Retroactive Approximate Range and Nearest Neighbor Searching. ArXiv e-prints (September 2011)

    Google Scholar 

  22. Guibas, L.J.: Kinetic data structures — a state of the art report. In: Agarwal, P.K., Kavraki, L.E., Mason, M. (eds.) Proc. Workshop Algorithmic Found. Robot., pp. 191–209. A. K. Peters, Wellesley (1998)

    Google Scholar 

  23. Har-Peled, S.: A replacement for voronoi diagrams of near linear size. In: Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., pp. 94–103 (2001)

    Google Scholar 

  24. Liao, S., Lopez, M., Leutenegger, S.: High dimensional similarity search with space filling curves. In: Proceedings of the 17th International Conference on Data Engineering, pp. 615–622 (2001)

    Google Scholar 

  25. Mortensen, C.W.: Fully-dynamic two dimensional orthogonal range and line segment intersection reporting in logarithmic time. In: 14th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 618–627 (2003)

    Google Scholar 

  26. Morton, G.M.: A computer oriented geodetic data base; and a new technique in file sequencing, Tech. rep., IBM Ltd. (1966)

    Google Scholar 

  27. Mount, D.M., Park, E.: A dynamic data structure for approximate range searching. In: ACM Symp. on Computational Geometry, pp. 247–256 (2010)

    Google Scholar 

  28. Orenstein, J.A.: Multidimensional tries used for associative searching. Inform. Process. Lett. 13, 150–157 (1982)

    Article  Google Scholar 

  29. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 3rd edn. Springer, Heidelberg (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goodrich, M.T., Simons, J.A. (2011). Fully Retroactive Approximate Range and Nearest Neighbor Searching. In: Asano, T., Nakano, Si., Okamoto, Y., Watanabe, O. (eds) Algorithms and Computation. ISAAC 2011. Lecture Notes in Computer Science, vol 7074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25591-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25591-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25590-8

  • Online ISBN: 978-3-642-25591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics