Skip to main content

Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching

  • Conference paper
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

Similarity and correspondence are two fundamental archetype problems in shape analysis, encountered in numerous application in computer vision and pattern recognition. Many methods for shape similarity and correspondence boil down to the minimum-distortion correspondence problem, in which two shapes are endowed with certain structure, and one attempts to find the matching with smallest structure distortion between them. Defining structures invariant to some class of shape transformations results in an invariant minimum-distortion correspondence or similarity. In this paper, we model shapes using local and global structures, formulate the invariant correspondence problem as binary graph labeling, and show how different choice of structure results in invariance under various classes of deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, A., Berg, T., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: Proc. CVPR, vol. 1 (2005)

    Google Scholar 

  2. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–346 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS 103, 1168–1172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. Trans. Visualization and Computer Graphics 13, 902–913 (2007)

    Article  Google Scholar 

  5. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28, 1383–1392 (2009)

    Article  Google Scholar 

  6. Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)

    Google Scholar 

  7. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for shape recognition. INRIA Technical Report 7161 (2009)

    Google Scholar 

  8. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface Feature Detection and Description with Applications to Mesh Matching. In: Proc. CVPR (2009)

    Google Scholar 

  9. Thorstensen, N., Keriven, R.: Non-rigid Shape matching using Geometry and Photometry. In: Proc. CVPR (2009)

    Google Scholar 

  10. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. SGP, pp. 225–233 (2007)

    Google Scholar 

  11. Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In: Proc. CVPR (2008)

    Google Scholar 

  12. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Visual Computer 25, 667–675 (2009)

    Article  Google Scholar 

  13. Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In: Proc. 3DPVT (2010)

    Google Scholar 

  14. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. TOG 28 (2009)

    Google Scholar 

  15. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: Proc. CVPR (2010)

    Google Scholar 

  16. Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proc. Computer Vision and Pattern Recognition (CVPR), pp. 168–174 (2001)

    Google Scholar 

  17. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV, 1–21 (2010)

    Google Scholar 

  18. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. Trans. PAMI 29, 1873–1890 (2007)

    Article  Google Scholar 

  19. Gromov, M.: Structures Métriques Pour les Variétés Riemanniennes. Textes Mathématiques (1) (1981)

    Google Scholar 

  20. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)

    Google Scholar 

  22. Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: Message-passing revisited. In: Proc. ICCV (2007)

    Google Scholar 

  23. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Computer Graphics Forum 27, 1431–1439 (2008)

    Article  Google Scholar 

  24. Raviv, D., Bronstein, A., Bronstein, M., Kimmel, R.: Symmetries of non-rigid shapes. In: Proc. NRTL (2007)

    Google Scholar 

  25. Memoli, F. On the use of gromov-hausdorff distances for shape comparison

    Google Scholar 

  26. Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. Computer Graphics Forum 27, 1341–1348 (2008)

    Article  Google Scholar 

  27. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102, 7426–7431 (2005)

    Article  Google Scholar 

  28. Grinstead, C.M., Snell, L.J.: Introduction to Probability. AMS (1998)

    Google Scholar 

  29. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. Trans. PAMI 18, 377–388 (1996)

    Article  Google Scholar 

  30. Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  32. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. SMI, pp. 167–178 (2004)

    Google Scholar 

  33. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. PNAS 95, 8431–8435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and Mathematics III, 35–57 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Bronstein, M.M., Bronstein, A.M., Paragios, N. (2012). Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics