Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 237))

Abstract

Because the credit industry has a lot of bad debt problems, credit assessment has become a very important topic in financial institutions. Recent studies have shown that many algorithms in the fields of machine learning and artificial intelligence are competitive to statistical methods for credit assessment. Random forests, one of the most popular ensemble learning techniques, is introduced to the credit assessment problem in this paper. An experimental evaluation of different methods is carried out on the public dataset. The experimental results indicate that the random forests method improves the performance obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HSN Consultants Inc.: The Nilson report, Oxnard, California (2007)

    Google Scholar 

  2. Reichert, A.K., Cho, C.C., Wagner, G.M.: An examination of the conceptual issues involved in developing credit-scoring models. Journal of Business and Economic Statistics 1(2), 101–114 (1983)

    Google Scholar 

  3. Henley, W.E.: Statistical aspects of credit scoring. Dissertation. Springer, Milton Keynes (1995)

    Google Scholar 

  4. Huang, C.L., Chen, M.C., Wang, C.J.: Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications 33(4), 847–856 (2007)

    Article  MathSciNet  Google Scholar 

  5. Ligang, Z., Kin, K.L., Jerome, Y.: Credit Scoring Models with AUC Maximization Based on Weighted SVM. International Journal of Information Technology and Decision Making 8(4), 677–696 (2009)

    Article  MATH  Google Scholar 

  6. Abdou, H.A.: Genetic programming for credit scoring: The case of Egyptian public sector banks. Expert Systems With Applications 36(9), 11402–11417 (2009)

    Article  Google Scholar 

  7. Ong, C.S., Huang, J.J., Tzeng, G.H.: Building credit scoring systems using genetic programming. Expert Systems with Applications 29, 41–47 (2005)

    Article  Google Scholar 

  8. West, D.: Neural network credit scoring models. Computers and Operational Research 27, 1131–1152 (2000)

    Article  MATH  Google Scholar 

  9. Henley, W.E., Hand, D.J.: A k-nearest neighbor classifier for assessing consumer risk. Statician 44(1), 77–95 (1996)

    Article  Google Scholar 

  10. Davis, R.H., Edelman, D.B., Gammerman, A.J.: Machine learning algorithms for credit-card applications. IMA Journal of Management Mathematics 4, 43–51 (1992)

    Article  Google Scholar 

  11. Frydman, H.E., Altman, E.I., Kao, D.L.: Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance 40(1), 269–291 (1985)

    Article  Google Scholar 

  12. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. wikipedia, http://en.wikipedia.org/wiki/Random_forest

  15. Anita, P., Dirk, V.P.: Random Forests for multiclass classification: Random Multi Nomial Logit. Expert Systems with Applications 34, 1721–1732 (2008)

    Article  Google Scholar 

  16. Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: A survey and results of new tests. Pattern Recognition 44, 330–349 (2011)

    Article  Google Scholar 

  17. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  18. Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1-2), 69–90 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, L., Liu, Y., Ma, X. (2011). Credit Assessment with Random Forests. In: Deng, H., Miao, D., Wang, F.L., Lei, J. (eds) Emerging Research in Artificial Intelligence and Computational Intelligence. AICI 2011. Communications in Computer and Information Science, vol 237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24282-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24282-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24281-6

  • Online ISBN: 978-3-642-24282-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics