Skip to main content

DSRC-Based Channel Allocation Algorithm for Emergency Message Dissemination in VANETs

  • Conference paper
Convergence and Hybrid Information Technology (ICHIT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6935))

Included in the following conference series:

Abstract

VANET (Vehicular Ad-hoc Network) is divided into V2V (Vehicle-to-Vehicle) communication and V2I (Vehicle to Infrastructure) communication. V2V requires no infrastructure or roadside devices and vehicles communicate with each other using wireless inter-vehicle communication. V2I requires some infrastructure such as RSUs (Road Side Units). OBUs (On Board Units) installed in vehicles can access to backbone networks by using RSUs. Unlike MANET (Mobile Ad-hoc Network), VANET requires a mechanism to accommodate the environment that the moving speed of vehicles is very fast and the network topology changes frequently. VANET can use IEEE 1609.4 that supports multi-channel operation. The multi-channel approach of IEEE 1609.4 uses orthogonal channels to communicate between RSU and OBU. However, if emergency messages should be processed in high priority, the delay time will be increased because the multi-channel approach makes a fair share of available channels. Therefore, this paper proposes DMAE (DSRC-based Multi-Channel Allocation for Emergency Message Dissemination) algorithm to resolve this problem. DMAE allocates the highest bandwidth channel to the urgent message firstly, and guarantees QoS between RSU and OBU through periodic channel switching. Simulation results using ns-2 show performance improvement in terms of end-to-end delay and emergency message delivery rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE 1609.4 SWG: 1609.4-2010 - IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation. IEEE, Los Alamitos (2010)

    Google Scholar 

  2. IUR-R TF.460-4: Stand-Frequency and Time-Signal Emissions. IUR (1986)

    Google Scholar 

  3. IEEE 1609.1 SWG: 1609.1-2006 - IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Resource Manager. IEEE, Los Alamitos (2006)

    Google Scholar 

  4. IEEE 1609.2 SWG: 1609.2-2006 - IEEE Trial-Use Standard for Wireless Access in Vehicular Environments - Security Services for Applications and Management Messages. IEEE, Los Alamitos (2006)

    Google Scholar 

  5. IEEE 1609.3 SWG: 1609.3-2010 - IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services. IEEE, Los Alamitos (2010)

    Google Scholar 

  6. IEEE 802.11p SWG: Draft Amendment to Standard for Information Technology -Telecommunication and Information Exchange between Systems - Local and Metropolitan networks-Specific Requirements - part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment: Wireless Access I Vehicular Environments. IEEE, Los Alamitos (2009)

    Google Scholar 

  7. ASTM E2213 Std: Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE, Los Alamitos (2010)

    Google Scholar 

  8. Morgan, Y.L.: Review Article Managing DSRC and WAVE Standards Operations in a V2V Scenario. International Journal of Vehicular Technology, Hindawi (2010)

    Google Scholar 

  9. ns-2 modifications, http://www-i4.informatik.rwthaachen.de/mcg/projects

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryu, MW., Cha, SH., Cho, KH. (2011). DSRC-Based Channel Allocation Algorithm for Emergency Message Dissemination in VANETs. In: Lee, G., Howard, D., Ślęzak, D. (eds) Convergence and Hybrid Information Technology. ICHIT 2011. Lecture Notes in Computer Science, vol 6935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24082-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24082-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24081-2

  • Online ISBN: 978-3-642-24082-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics