Skip to main content

Gradient Descent Decomposition for Multi-objective Learning

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2011 (IDEAL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6936))

  • 1803 Accesses

Abstract

Multi-objective learning has been explored in neural network because it adjusts the model capacity providing better generalization properties. It usually requires sophisticated algorithms such as ellipsoidal, sliding-mode, genetic algorithms, among others. This paper proposes an affordable algorithm that decomposes the gradient into two components and it adjusts the weights of the network separately. By doing so multi-objective learning with L 2 norm control is accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  2. Teixeira, R.A., Braga, A.P., Takahashi, R.H.C., Saldanha, R.R.: Improving generalization of mlps with multi-objective optimization. Neurocomputing 35, 189–194 (2000)

    Article  MATH  Google Scholar 

  3. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology, vol. 8. North-Holland (Elsevier), New York (1983)

    MATH  Google Scholar 

  4. Braga, A.P., Takahashi, R.H.C., Teixeira, R.A., Costa, M.A.: Multi-Objective Algorithms for Neural Networks Learning. In: Jin, Y. (ed.) Multiobjective Machine Learning, pp. 151–172. Springer, Heidelberg (2006)

    Google Scholar 

  5. Costa, M.A., Braga, A.P., Menezes, B.R., Teixeira, R.A., Parma, G.G.: Training neural networks with a multi-objective sliding mode control algorithm. Neurocomputing 51, 467–473 (2003)

    Article  Google Scholar 

  6. Liu, G.P., Kadirkamanathan, V.: Learning with multi-objective criteria. In: International Conference on Neural Networks, UK, pp. 53–58 (1995)

    Google Scholar 

  7. Bartlett, P.L.: For valid generalization, the size of the weights is more important than the size of the network. In: Proceedings of NIPS, pp. 134–140 (1997)

    Google Scholar 

  8. Boser, B., Guyon, I., Vapnik, V.: A Training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. Morgan Kaufmann, San Mateo (1992)

    Chapter  Google Scholar 

  9. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Transactions on Systems, Man, and Cybernetics 1(3), 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  10. Bland, R.G., Goldfarb, D., Todd, M.J.: The Ellipsoidal Method: A Survey. Operations Research 29(6), 1039–1091 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Medeiros, T., Braga, A.P.: A new decision strategy in multi-objective training of artificial neural networks. In: European Symposium on Neural Networks (ESANN 2007), pp. 555–560 (2007)

    Google Scholar 

  12. Teixeira, R.A., Braga, A.P., Saldanha, R.R., Takahashi, R.H.C., Medeiros, T.H.: The Usage of Golden Section in Calculating the Efficient Solution in Artificial Neural Networks Training by Multi-objective Optimization. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 289–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Kokshenev, I., Braga, A.P.: Complexity bounds and multi-objective learning of radial basis functions. Neurocomputing 71, 1203–1209 (2008)

    Article  Google Scholar 

  14. Braga, A.P.: New decision strategies for multi-objective learning (2011) (in preparation)

    Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Representations by Back-Propagating Errors. Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  16. Costa, M.A., Braga, A.P., Menezes, B.R.: Improving generalization of MLPs with Sliding Mode Control and the Levenberg-Marquadt algorithm. Neurocomputing 70, 1342–1347 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, M.A., Braga, A.P. (2011). Gradient Descent Decomposition for Multi-objective Learning. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics