Skip to main content

CP Models for Maximum Common Subgraph Problems

  • Conference paper
Principles and Practice of Constraint Programming – CP 2011 (CP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

The distance between two graphs is usually defined by means of the size of a largest common subgraph. This common subgraph may be an induced subgraph, obtained by removing nodes, or a partial subgraph, obtained by removing arcs and nodes. In this paper, we introduce two soft CSPs which model these two maximum common subgraph problems in a unified framework. We also introduce and compare different CP models, corresponding to different levels of constraint propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunke, H., Sharer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3), 255–259 (1998)

    Article  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computer and intractability. Freeman, New York (1979)

    Google Scholar 

  3. Régin, J.-C.: Développement d’Outils Algorithmiques pour l’Intelligence Artificielle. Application à la Chimie Organique. PhD thesis, Université Montpellier II (1995)

    Google Scholar 

  4. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computeraided Molecular Design 16(7), 521–533 (2002)

    Article  Google Scholar 

  5. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM Journal on Computing 15(4), 1054–1068 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Durand, P.J., Pasari, R., Baker, J.W., Tsai, C.: An efficient algorithm for similarity analysis of molecules. Internet Journal of Chemistry 2 (1999)

    Google Scholar 

  7. Raymond, J.W., Gardiner, E.J., Willett, P.: Calculation of graph similarity using maximum common edge subgraphs. The Computer Journal 45(6) (2002)

    Google Scholar 

  8. McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph problem. Software Practice and Experience 12(1), 23–34 (1982)

    Article  MATH  Google Scholar 

  9. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common subgraph detection algorithms: A performance analysis of three algorithms on a wide database of graphs. Graph Algorithms and Applications 11(1), 99–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vismara, P., Valery, B.: Finding maximum common connected subgraphs using clique detection or constraint satisfaction algorithms. Communications in Computer and Information Science 14(1), 358–368 (2008)

    Article  MATH  Google Scholar 

  11. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalog: Past, present and future. Constraints 12(1), 21–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)

    Google Scholar 

  13. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–464. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: AAAI 1994, pp. 362–367 (1994)

    Google Scholar 

  15. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldiff constraint: An empirical survey. Artificial Intelligence 172(18), 1973–2000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem. Constraints 13(4), 518–537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with constraint programming. Constraints 15(3), 327–353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), 850–864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ndiaye, S.N., Solnon, C. (2011). CP Models for Maximum Common Subgraph Problems. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics