The Computational Complexity of Disconnected Cut and $\mathbf{2} K_{2}$-Partition ${ }^{\star}$

Barnaby Martin and Daniël Paulusma
School of Engineering and Computing Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
\{barnaby.martin, daniel.paulusma\}@durham.ac.uk

Abstract

For a connected graph $G=(V, E)$, a subset $U \subseteq V$ is called a disconnected cut if U disconnects the graph and the subgraph induced by U is disconnected as well. We show that the problem to test whether a graph has a disconnected cut is NP-complete. This problem is polynomially equivalent to the following problems: testing if a graph has a $2 K_{2}$-partition, testing if a graph allows a vertex-surjective homomorphism to the reflexive 4 -cycle and testing if a graph has a spanning subgraph that consists of at most two bicliques. Hence, as an immediate consequence, these three decision problems are NP-complete as well. This settles an open problem frequently posed in each of the four settings.

1 Introduction

We solve an open problem that showed up as a missing case (often the missing case) in a number of different research areas arising from connectivity theory, graph covers and graph homomorphisms. Before we explain how these areas are related, we briefly describe them first. Throughout the paper, we consider undirected finite graphs that have no multiple edges. Unless explicitly stated otherwise they do not have self loops either. We denote the vertex set and edge set of a graph G by V_{G} and E_{G}, respectively. If no confusion is possible, we may omit the subscripts. The complement of a graph $G=(V, E)$ is the graph $\bar{G}=(V,\{u v \notin E \mid u \neq v\})$. For a subset $U \subseteq V_{G}$, we let $G[U]$ denote the subgraph of G induced by U, which is the graph $(U,\{u v \mid u, v \in$ U and $\left.u v \in E_{G}\right\}$).

1.1 Vertex Cut Sets

A maximal connected subgraph of G is called a component of G. A vertex cut (set) or separator of a graph $G=(V, E)$ is a subset $U \subset V$ such that $G[V \backslash U]$ contains at least two components.

Vertex cuts play an important role in graph connectivity, and in the literature various kinds of vertex cuts have been studied. For instance, a cut U of a graph $G=(V, E)$ is called a k-clique cut if $G[U]$ has a spanning subgraph consisting of k complete graphs; a strict k-clique cut if $G[U]$ consists of k components that are complete graphs; a stable cut if U is an independent set; and a matching cut if $E_{G[U]}$ is a matching. The problem

[^0]that asks whether a graph has a k-clique cut is solvable in polynomial time for $k=1$, as shown by Whitesides [22], and for $k=2$ as shown by Cameron et al. [4]. The latter authors also showed that deciding if a graph has a strict 2 -clique cut can be solved in polynomial time. On the other hand, the problems that ask whether a graph has a stable cut or a matching cut, respectively, are NP-complete, as shown by Chvátal [6] and Brandstädt et al. [1], respectively.

For a fixed constant $k \geq 1$, a cut U of a connected graph G is called a k-cut of G if $G[U]$ contains exactly k components. Testing if a graph has a k-cut is solvable in polynomial time for $k=1$, whereas it is NP-complete for every fixed $k \geq 2$ [15]. For $k \geq 1$ and $\ell \geq 2$, a k-cut U is called a (k, ℓ)-cut of a graph G if $G[V \backslash U]$ consists of exactly ℓ components. Testing if a graph has a (k, ℓ)-cut is polynomial-time solvable when $k=1, \ell \geq 2$, and NP-complete otherwise [15].

A cut U of a graph G is called disconnected if $G[U]$ contains at least two components. We observe that U is a disconnected cut if and only if $V \backslash U$ is a disconnected cut if and only if U is a (k, ℓ)-cut for some $k \geq 2$ and $\ell \geq 2$. The following question was posed in several papers [12[15|16] as an open problem.

Q1. How hard is it to test if a graph has a disconnected cut?

The problem of testing if a graph has a disconnected cut is called the Disconnected CuT problem. A disconnected cut U of a connected graph $G=(V, E)$ is minimal if $G[(V \backslash U) \cup\{u\}]$ is connected for every $u \in U$. Recently, the corresponding decision problem called Minimal Disconnected Cut was shown to be NP-complete [16].

1.2 H-Partitions

A model graph H with $V_{H}=\left\{h_{0}, \ldots, h_{k-1}\right\}$ has two types of edges: solid and dotted edges, and an H-partition of a graph G is a partition of V_{G} into k (nonempty) sets V_{0}, \ldots, V_{k-1} such that for all vertices $u \in V_{i}, v \in V_{j}$ and for all $0 \leq i<j \leq k-1$ the following two conditions hold. Firstly, if $h_{i} h_{j}$ is a solid edge of H, then $u v \in E_{G}$. Secondly, if $h_{i} h_{j}$ is a dotted edge of H, then $u v \notin E_{G}$. There are no such restrictions when h_{i} and h_{j} are not adjacent. Let $2 K_{2}$ be the model graph with vertices h_{0}, \ldots, h_{3} and two solid edges $h_{0} h_{2}, h_{1} h_{3}$, and $2 S_{2}$ be the model graph with vertices h_{0}, \ldots, h_{3} and two dotted edges $h_{0} h_{2}, h_{1} h_{3}$. We observe that a graph G has a $2 K_{2}$-partition if and only if its complement \bar{G} has a $2 S_{2}$-partition.

The following question was mentioned in several papers [5]7|8|11|18] as an open problem.

Q2. How hard is it to test if a graph has a $2 K_{2}$-partition?

One of the reasons for posing this question is that the (equivalent) cases $H=2 K_{2}$ and $H=2 S_{2}$ are the only two cases of model graphs on at most four vertices for which the computational complexity of the corresponding decision problem, called H-Partition, is still open; all other of such cases have been settled by Dantas et al. [7]. Especially, $2 K_{2}$-partitions have been well studied, see e.g. three very recent papers of Cook et al. [5], Dantas, Maffray and Silva [8] and Teixeira, Dantas and
de Figueiredo [18]. The first two papers [5|8] study the $2 K_{2}$-Partition problem for several graph classes, and the second paper [18] defines a new complexity class of problems called $2 K_{2}$-hard.

By a result on retractions of Hell and Feder [9], which we explain later, the list versions of $2 S_{2}$-Partition and $2 K_{2}$-Partition are NP-complete. A variant on H partitions that allows empty blocks V_{i} in an H-partition is studied by Feder et al. [10], whereas Cameron et al. [4] consider the list version of this variant.

1.3 Graph Covers

Let G be a graph and \mathcal{S} be a set of (not necessarily vertex-induced) subgraphs of G that has size $|\mathcal{S}|$. The set \mathcal{S} is a cover of G if every edge of G is contained in at least one of the subgraphs in \mathcal{S}. The set \mathcal{S} is a vertex-cover of G if every vertex of G is contained in at least one of the subgraphs in \mathcal{S}. If all subgraphs in \mathcal{S} are bicliques, that is, complete connected bipartite graphs, then we speak of a biclique cover or a biclique vertex-cover, respectively. Testing whether a graph has a biclique cover of size at most k is polynomial-time solvable for any fixed k; it is even fixed-parameter tractable in k as shown by Fleischner et al. [12]. The same authors [12] show that testing whether a graph has a biclique vertex-cover of size at most k is polynomial-time solvable for $k=1$ and NP-complete for $k \geq 3$. For $k=2$, they show that this problem can be solved in polynomial time for bipartite input graphs, and they pose the following open problem.

Q3. How hard is it to test if a graph has a biclique vertex-cover of size 2?
The problem of testing if a graph has a biclique vertex-cover of size 2 is called the 2Biclique Vertex-Cover problem. In order to answer question Q3 we may without loss of generality restrict to biclique vertex-covers in which every vertex is in exactly one of the subgraphs in \mathcal{S} (cf. [12]).

1.4 Graph Homomorphisms

A homomorphism from a graph G to a graph H is a mapping $f: V_{G} \rightarrow V_{H}$ that maps adjacent vertices of G to adjacent vertices of H, i.e., $f(u) f(v) \in E_{H}$ whenever $u v \in E_{G}$. The problem H-HомомоRPHISM tests whether a given graph G allows a homomorphism to a graph H called the target which is fixed, i.e., not part of the input. This problem is also known as H-Coloring. Hell and Nešetřil [14] showed that H Homomorphism is solvable in polynomial time if H is bipartite, and NP-complete otherwise. Here, H does not have a self-loop $x x$, as otherwise we can map every vertex of G to x.

A homomorphism f from a graph G to a graph H is surjective if for each $x \in V_{H}$ there exists at least one vertex $u \in V_{G}$ with $f(u)=x$. This leads to the problem of deciding if a given graph allows a surjective homomorphism to a fixed target graph H, which is called the Surjective H-Homomorphism or Surjective H-Coloring problem. For this variant, the presence of a vertex with a self-loop in the target graph H does not make the problem trivial. Such vertices are called reflexive, whereas vertices with no self-loop are said to be irreflexive. A graph that contains zero or more reflexive
vertices is called partially reflexive. In particular, a graph is reflexive if all its vertices are reflexive, and a graph is irreflexive if all its vertices are irreflexive. Golovach, Paulusma and Song [13] showed that for any fixed partially reflexive tree H, the Surjective H-Homomorphism problem is polynomial-time solvable if the (possibly empty) set of reflexive vertices in H induces a connected subgraph of H, and NP-complete otherwise [13]. They mention that the smallest open case is the case in which H is the reflexive 4 -cycle denoted \mathcal{C}_{4}.

Q4. How hard is it to test if a graph has a surjective homomorphism to \mathcal{C}_{4} ?

The following two notions are closely related to surjective homomorphisms. A homomorphism f from a graph G to an induced subgraph H of G is a retraction from G to H if $f(h)=h$ for all $h \in V_{H}$. In that case we say that G retracts to H. For a fixed graph H, the H-Retraction problem has as input a graph G that contains H as an induced subgraph and is to test if G retracts to H. Hell and Feder [9] showed that \mathcal{C}_{4}-Retraction is NP-complete.

We emphasize that a surjective homomorphism is vertex-surjective. A stronger notion is to require a homomorphism from a graph G to a graph H to be edge-surjective, which means that for any edge $x y \in E_{H}$ with $x \neq y$ there exists an edge $u v \in E_{G}$ with $f(u)=x$ and $f(v)=y$. Note that the edge-surjectivity condition only holds for edges $x y \in E_{H}$; there is no such condition on the self-loops $x x \in E_{H}$. An edgesurjective homomorphism is also called a compaction. If f is a compaction from G to H, we say that G compacts to H. The H-Compaction problem asks if a graph G compacts to a fixed graph H. Vikas [1920[21] determined the computational complexity of this problem for several classes of fixed target graphs. In particular, he showed that \mathcal{C}_{4}-Compaction is NP-complete [19].

1.5 The Relationships between Questions Q1-Q4

Before we explain how questions Q1-Q4 are related, we first introduce some new terminology. The distance $d_{G}(u, v)$ between two vertices u and v in a graph G is the number of edges in a shortest path between them. The diameter $\operatorname{diam}(G)$ is defined as $\max \left\{d_{G}(u, v) \mid u, v \in V\right\}$. The edge contraction of an edge $e=u v$ in a graph G replaces the two end-vertices u and v with a new vertex adjacent to precisely those vertices to which u or v were adjacent. If a graph H can be obtained from G by a sequence of edge contractions, then G is said to be contractible to H. The biclique with partition classes of size k and ℓ is denoted $K_{k, \ell}$; it is called nontrivial if $k \geq 1$ and $\ell \geq 1$.

Proposition 1 ([15]). Let G be a connected graph. Then statements (1)-(5) are equivalent:
(1) G has a disconnected cut.
(2) G has a $2 S_{2}$-partition.
(3) G allows a vertex-surjective homomorphism to \mathcal{C}_{4}.
(4) \bar{G} has a spanning subgraph that consists of exactly two nontrivial bicliques.
(5) \bar{G} has a $2 K_{2}$-partition.

If $\operatorname{diam}(G)=2$, then $(1)-(5)$ are also equivalent to the following statements:
(6) G allows a compaction to \mathcal{C}_{4}.
(7) G is contractible to some biclique $K_{k, \ell}$ for some $k, \ell \geq 2$.

Due to Proposition 11 questions Q1-Q4 are equivalent. Hence, by solving one of them we solve them all. Moreover, every graph of diameter 1 has no disconnected cut, and every graph of diameter at least 3 has a disconnected cut [12]. Hence, we may restrict ourselves to graphs of diameter 2. Then, by solving one of Q1-Q4 we also determine the computational complexity of \mathcal{C}_{4}-COMPACTION on graphs of diameter 2 and BICLIQUE CONTRACTION on graphs of diameter 2 ; the latter problem is to test if a graph can be contracted to a biclique $K_{k, \ell}$ for some $k, \ell \geq 2$. Recall that Vikas [19] showed that $\mathcal{C}_{4}{ }^{-}$ Compaction is NP-complete. However, the gadget in his NP-completeness reduction has diameter 3 as observed by Ito et al. [16].

Our Result. We solve question Q4 by showing that the problem Surjective \mathcal{C}_{4} Homomorphism is NP-complete, even for graphs of diameter 2 that have a dominating non-edge. A pair of vertices in a graph is a dominating (non-)edge if the two vertices of the pair are (non-)adjacent, and any other vertex in the graph is adjacent to at least one of them. In contrast, Fleischner et al. [12] showed that this problem is polynomialtime solvable on input graphs with a dominating edge. As a consequence of our result, we find that the problems Disconnected Cut, $2 K_{2}$-Partition, $2 S_{2}$-Partition, and 2-Biclique Vertex-Cover are all NP-complete. Moreover, we also find that the problems \mathcal{C}_{4}-Compaction and Biclique Contraction are NP-complete even for graphs of diameter 2.

Our approach to prove NP-completeness is as follows. As mentioned before, we can restrict ourselves to graphs of diameter 2 . We therefore try to reduce the diameter in the gadget of the NP-completeness proof of Vikas [19] for \mathcal{C}_{4}-COMPACTION from 3 to 2. This leads to NP-completeness of SURJECTIVE \mathcal{C}_{4}-HOMOMORPHISM, because these two problems coincide for graphs of diameter 2 due to Proposition 1 . The proof that $\mathcal{C}_{4}{ }^{-}$ Compaction is NP-complete [19] has its roots in the proof that \mathcal{C}_{4}-RETRACTION is NP-complete [9]. So far, it was only known that \mathcal{C}_{4}-RETRACTION stays NP-complete for graphs of diameter 3 [16]. We start our proof by showing that \mathcal{C}_{4}-RETRACTION is NP-compete even for graphs of diameter 2. The key idea is to base the reduction from an NP-complete homomorphism (constraint satisfaction) problem that we obtain only after a fine analysis under the algebraic conditions of Bulatov, Krokhin and Jeavons [3]. We perform this analysis in Section 2 and present our NP-completeness proof for \mathcal{C}_{4}-RETRACTION on graphs of diameter 2 in Section 3. This leads a special input graph of the \mathcal{C}_{4}-RETRACTION problem, which enables us to modify the gadget of the proof of Vikas [19] for \mathcal{C}_{4}-Compaction in order to get its diameter down to 2 , as desired. We explain this part in Section 4

For reasons of space some simple proofs are omitted, these can be found in the full version of this paper [17].

2 Constraint Satisfaction

The notion of a graph homomorphism can be generalized as follows. A structure is a tuple $\mathcal{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$, where A is a set called the domain of \mathcal{A} and R_{i} is an
n_{i}-ary relation on A for $i=1, \ldots, k$, i.e., a set of n_{i}-tuples of elements from A. Note that a graph $G=(V, E)$ can be seen as a structure $G=(V ;\{(u, v),(v, u) \mid u v \in E\})$. Throughout the paper we only consider finite structures, i.e., with a finite domain.

Let $\mathcal{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ and $\mathcal{B}=\left(B ; S_{1}, \ldots, S_{k}\right)$ be two structures, where each R_{i} and S_{i} are relations of the same arity n_{i}. Then a homomorphism from \mathcal{A} to \mathcal{B} is a mapping $f: A \rightarrow B$ such that $\left(a_{1}, \ldots, a_{n_{i}}\right) \in R_{i}$ implies $\left(f\left(a_{1}\right), \ldots, f\left(a_{n_{i}}\right)\right) \in S_{i}$ for every i and every n_{i}-tuple $\left(a_{1}, \ldots, a_{n_{i}}\right) \in A^{n_{i}}$. The decision problem that is to test if a given structure \mathcal{A} allows a homomorphism to a fixed structure \mathcal{B} is called the \mathcal{B}-Homomorphism problem, also known as the \mathcal{B}-Constraint Satisfaction problem.

Let $\mathcal{A}=\left(A ; R_{1}, \ldots, R_{k}\right)$ be a structure. The power structure \mathcal{A}^{ℓ} has domain A^{ℓ} and for $1 \leq i \leq k$, has relations

$$
R_{i}^{\ell}:=\left\{\left(\left(a_{1}^{1}, \ldots, a_{\ell}^{1}\right), \ldots,\left(a_{1}^{n_{i}}, \ldots, a_{\ell}^{n_{i}}\right)\right) \mid\left(a_{1}^{1}, \ldots, a_{1}^{n_{i}}\right), \ldots,\left(a_{\ell}^{1}, \ldots, a_{\ell}^{n_{i}}\right) \in R_{i}\right\}
$$

An (l-ary) polymorphism of \mathcal{A} is a homomorphism from \mathcal{A}^{ℓ} to \mathcal{A} for some integer ℓ. A 1 -ary polymorphism is an endomorphism. The set of polymorphisms of \mathcal{A} is denoted $\operatorname{Pol}(\mathcal{A})$.

A binary function f on a domain A is a semilattice function if $f(h,(f(i, j))=$ $f(f(h, i), j), f(i, j)=f(j, i)$, and $f(i, i)=i$ for all $i, j \in A$. A ternary function f is a Mal'tsev function if $f(i, j, j)=f(j, j, i)=i$ for all $i, j \in A$. A ternary function f is a majority function if $f(h, h, i)=f(h, i, h)=f(i, h, h)=h$ for all $h, i \in A$. On the Boolean domain $\{0,1\}$, we may consider propositional functions. The only two semilattice functions on the Boolean domain are the binary function \wedge, which maps (h, i) to $(h \wedge i)$, which is 1 if $h=i=1$ and 0 otherwise, and the binary function \vee which maps (h, i) to ($h \vee i$), which is 0 if $h=i=0$ and 1 otherwise. We may consider each of these functions on any two-element domain (where we view one element as 0 and the other as 1). For a function f on B, and a subset $A \subseteq B$, let $f_{\mid A}$ be the restriction of f to A.

A structure is a core if all of its endomorphisms are automorphisms, i.e., are invertible. We will make use of the following theorem from Bulatov, Krokhin and Jeavons [3] (it appears in this form in Bulatov [2]).

Theorem 1 ([|3|). Let $\mathcal{B}=\left(B ; S_{1}, \ldots, S_{k}\right)$ be a core and $A \subseteq B$ be a subset of size $|A|=2$ that as a unary relation is in \mathcal{B}. If for each $f \in \operatorname{Pol}(\mathcal{B}), f_{\mid A}$ is not majority, semilattice or Mal'tsev, then \mathcal{B}-Homomorphism is NP-complete.

Let \mathcal{D} be the structure on domain $D=\{0,1,3\}$ with four binary relations

$$
\begin{aligned}
& S_{1}:=\{(0,3),(1,1),(3,1),(3,3)\} S_{3}:=\{(1,3),(3,1),(3,3)\} \\
& S_{2}:=\{(1,0),(1,1),(3,1),(3,3)\} S_{4}:=\{(1,1),(1,3),(3,1)\} .
\end{aligned}
$$

Proposition 2. The \mathcal{D}-Homomorphism problem is NP-complete.
Proof. We use Theorem 1. We first show that \mathcal{D} is a core. Let g be an endomorphism of \mathcal{D}. If $g(0)=3$ then $g(1)=3$ by preservation of S_{2}, i.e., as otherwise $(1,0) \in S_{2}$ does not imply $(g(1), g(0)) \in S_{2}$. However, $(1,1) \in S_{4}$ but $(g(1), g(1))=(3,3) \notin$ S_{4}. Hence $g(0) \neq 3$. If $g(0)=1$ then $g(3)=1$ by preservation of S_{1}. However,
$(3,3) \in S_{3}$ but $(g(3), g(3))=(1,1) \notin S_{3}$. Hence $g(0) \neq 1$. This means that $g(0)=0$. Consequently, $g(1)=1$ by preservation of S_{2}, and $g(3)=3$ by preservation of S_{1}. Hence, g is the identity mapping, which is an automorphism, as desired.

Let $A=\{1,3\}$, which is in \mathcal{D} in the form of $S_{1}(p, p)$ (or $S_{2}(p, p)$). Suppose that $f \in \operatorname{Pol}(\mathcal{D})$. In order to prove Proposition 2, we must show that $f_{\mid A}$ is neither majority nor semilattice nor Mal'tsev.

Suppose that $f_{\mid A}$ is semilattice. Then $f_{\mid A}=\wedge$ or $f_{\mid A}=\vee$. If $f=\wedge$, then either $f(1,1)=1, f(1,3)=3, f(3,1)=3, f(3,3)=3$, or $f(1,1)=1, f(1,3)=1$, $f(3,1)=1, f(3,3)=3$ depending on how the elements 1,3 correspond to the two elements of the Boolean domain. The same holds for $f=\mathrm{V}$. Suppose that $f(1,1)=1$, $f(1,3)=3, f(3,1)=3, f(3,3)=3$. By preservation of S_{4} we find that $f(1,3)=1$ due to $f(3,1)=3$. This is not possible. Suppose that $f(1,1)=1, f(1,3)=1$, $f(3,1)=1, f(3,3)=3$. By preservation of S_{3} we find that $f(1,3)=3$ due to $f(3,1)=1$. This is not possible.

Suppose that $f_{\mid A}$ is Mal'tsev. By preservation of S_{4}, we find that $f(1,1,3)=1$ due to $f(3,1,1)=3$. However, because $f(1,1,3)=3$, this is not possible.

Suppose that $f_{\mid A}$ is majority. By preservation of S_{1}, we deduce that $f(0,3,1) \in$ $\{0,3\}$ due to $f(3,3,1)=3$, and that $f(0,3,1) \in\{1,3\}$ due to $f(3,1,1)=1$. Thus, $f(0,3,1)=3$. By preservation of S_{2}, however, we deduce that $f(0,3,1) \in\{0,1\}$ due to $f(1,3,1)=1$. This is a contradiction. Hence, we have completed the proof of Proposition 2

3 Retractions

In the remainder of this paper, let H denote the reflexive 4 -vertex cycle \mathcal{C}_{4}, on vertices h_{0}, \ldots, h_{3}, with edges $h_{0} h_{1}, h_{1} h_{2}, h_{2} h_{3}, h_{3} h_{0}, h_{0} h_{0}, h_{1} h_{1}, h_{2} h_{2}$ and $h_{3} h_{3}$. We prove that H-Retraction is NP-complete for graphs of diameter 2 by a reduction from \mathcal{D}-Homomorphism.

Let $\mathcal{A}=\left(A ; R_{1}, \ldots, R_{4}\right)$ be an instance of \mathcal{D}-Homomorphism, where we may assume that each R_{i} is a binary relation. From \mathcal{A} we construct a graph G as follows. We let the elements in \mathcal{A} correspond to vertices of G. If $(p, q) \in R_{i}$ for some $1 \leq i \leq 4$, then we say that vertex p in G is of type ℓ and vertex q in G is of type r. Note that a vertex can be of type ℓ and r simultaneously, because it can be the first element in a pair in $R_{1} \cup \cdots \cup R_{4}$ and the second element of another such pair. For each $(p, q) \in R_{i}$ and $1 \leq i \leq 4$ we introduce four new vertices $a_{p}, b_{p}, c_{q}, d_{q}$ with edges $a_{p} p, a_{p} b_{p}, b_{p} p, c_{q} q$, $c_{q} d_{q}$ and $d_{q} q$. We say that a vertex $a_{p}, b_{p}, c_{q}, d_{q}$ is of type a, b, c, d, respectively; note that these vertices all have a unique type.

We now let the graph H be an induced subgraph of G (with distinct vertices h_{0}, \ldots, h_{3}). Then formally G must have self-loops $h_{0} h_{0}, \ldots, h_{3} h_{3}$. However, this is irrelevant for our problem, and we may assume that G is irreflexive (since H is reflexive, it does not matter - from the perspective of retraction - if G is reflexive, irreflexive or anything inbetween). In G we join every a-type vertex to h_{0} and h_{3}, every b-type vertex to h_{1} and h_{2}, every c-type vertex to h_{2} and h_{3}, and every d-type vertex to h_{0} and h_{1}. We also add an edge between h_{0} and every vertex of A.

We continue the construction of G by describing how we distinguish between two pairs belonging to different relations. If $(p, q) \in R_{1}$, then we add the edges $c_{q} p$ and $q h_{2}$; see Figure 1. If $(p, q) \in R_{2}$, then we add the edges $h_{2} p$ and $b_{p} q$; see Figure 2 If $(p, q) \in R_{3}$, then we add the edges $h_{2} p, h_{2} q$ and $a_{p} c_{q}$; see Figure 3. If $(p, q) \in R_{4}$, then we add the edges $h_{2} p, h_{2} q$ and $b_{p} d_{q}$; see Figure 4 We also add an edge between any two vertices of type a, between any two vertices of type b, between any two vertices of type c, and between any two vertices of type d. Note that this leads to four mutually vertex-disjoint cliques in G. We call G a \mathcal{D}-graph. The proof of Lemma 1 proceeds by a simple analysis (a diameter table appears in the full version of this paper [17]).

Fig. 1. The part of a \mathcal{D}-graph G for a pair $(p, q) \in R_{1}$

Fig. 3. The part of a \mathcal{D}-graph G for a pair $(p, q) \in R_{3}$

Fig. 2. The part of a \mathcal{D}-graph G for a pair $(p, q) \in R_{2}$

Fig. 4. The part of a \mathcal{D}-graph G for a pair $(p, q) \in R_{4}$

Lemma 1. Every \mathcal{D}-graph has diameter 2 and a dominating non-edge.
Recall that Feder and Hell [9] showed that H-Retraction is NP-complete. Ito et al. [16] observed that H-RETRACTION stays NP-complete on graphs of diameter 3. We need the following. Lemma 1 and Theorem 2 together imply that H-RETRACTION is NP-complete for graphs of diameter 2 that have a dominating non-edge.

Theorem 2. The H-RETRACtion problem is NP-complete even for \mathcal{D}-graphs.

Proof. We recall that H-RETRACTION is in NP, because we can guess a partition of the vertex set of the input graph G into four (non-empty) sets and verify in polynomial time if this partition corresponds to a retraction from G to H. From an instance \mathcal{A} of \mathcal{D} Homomorphism we construct a \mathcal{D}-graph G. We claim that \mathcal{A} allows a homomorphism to \mathcal{D} if and only if G retracts to H.

First suppose that \mathcal{A} allows a homomorphism f to \mathcal{D}. We construct a mapping g from V_{G} to V_{H} as follows. We let $g(a)=h_{i}$ if $f(a)=i$ for all $a \in A$ and $g\left(h_{i}\right)=h_{i}$ for $i=0, \ldots, 3$. Because f is a homomorphism from \mathcal{A} to \mathcal{D}, this leads to Tables 14 which explain where a_{p}, b_{p}, c_{q} and d_{q} map under g, according to where p and q map. From these, we conclude that g is a retraction from G to H. In particular, we note that the edges $c_{q} p, b_{p} q, a_{p} c_{q}$, and $b_{p} d_{q}$ each map to an edge or self-loop in H when (p, q) belongs to R_{1}, \ldots, R_{4}, respectively.

Table 1. g-values when $(p, q) \in R_{1}$

p	q	a_{p}	b_{p}	c_{q}	d_{q}
h_{0}	h_{3}	h_{0}	h_{1}	h_{3}	h_{0}
h_{1}	h_{1}	h_{0}	h_{1}	h_{2}	h_{1}
h_{3}	h_{1}	h_{3}	h_{2}	h_{2}	h_{1}
h_{3}	h_{3}	h_{3}	h_{2}	h_{3}	h_{0}

Table 3. g-values when $(p, q) \in R_{3}$

p	q	a_{p}	b_{p}	c_{q}	d_{q}
h_{1}	h_{3}	h_{0}	h_{1}	h_{3}	h_{0}
h_{3}	h_{1}	h_{3}	h_{2}	h_{2}	h_{1}
h_{3}	h_{3}	h_{3}	h_{2}	h_{3}	h_{0}

Table 2. g-values when $(p, q) \in R_{2}$

$$
\begin{array}{c|c|c|c|c|c}
p & q & a_{p} & b_{p} & c_{q} & d_{q} \\
\hline h_{1} & h_{0} & h_{0} & h_{1} & h_{3} & h_{0} \\
\hline h_{1} & h_{1} & h_{0} & h_{1} & h_{2} & h_{1} \\
\hline h_{3} & h_{1} & h_{3} & h_{2} & h_{2} & h_{1} \\
\hline h_{3} & h_{3} & h_{3} & h_{2} & h_{3} & h_{0}
\end{array}
$$

Table 4. g-values when $(p, q) \in R_{4}$

$$
\begin{array}{c|c|c|c|c|c}
p & q & a_{p} & b_{p} & c_{q} & d_{q} \\
\hline h_{1} & h_{1} & h_{0} & h_{1} & h_{2} & h_{1} \\
\hline h_{1} & h_{3} & h_{0} & h_{1} & h_{3} & h_{0} \\
\hline h_{3} & h_{1} & h_{3} & h_{2} & h_{2} & h_{1}
\end{array}
$$

To prove the reverse implication, suppose that G allows a retraction g to H. We construct a mapping $f: A \rightarrow\{0,1,2,3\}$ by defining $f(a)=i$ if $g(a)=h_{i}$ for $a \in A$. We claim that f is a homomorphism from \mathcal{A} to \mathcal{D}. In order to see this, we first note that g maps all a-type vertices to $\left\{h_{0}, h_{3}\right\}$, all b-type vertices to $\left\{h_{1}, h_{2}\right\}$, all c-type vertices to $\left\{h_{2}, h_{3}\right\}$ and all d-type vertices to $\left\{h_{0}, h_{1}\right\}$. We now show that $(p, q) \in R_{i}$ implies that $(f(p), f(q)) \in S_{i}$ for $i=1, \ldots, 4$.

Suppose that $(p, q) \in R_{1}$. Because p is adjacent to h_{0}, we obtain $g(p) \in\left\{h_{0}, h_{1}, h_{3}\right\}$. Because q is adjacent to h_{0} and h_{2}, we find that $g(q) \in\left\{h_{1}, h_{3}\right\}$. If $g(p)=h_{0}$, then g maps c_{q} to h_{3}, and consequently, $g(q)=h_{3}$. If $g(p)=h_{1}$, then g maps c_{q} to h_{2}, and consequently d_{q} to h_{1}, implying that $g(q)=h_{1}$. If $g(p)=h_{3}$, then we do not investigate further; we allow g to map q to h_{1} or h_{3}. Hence, we find that $(f(p), f(q)) \in\{(0,3),(1,1),(3,1),(3,3)\}=S_{1}$, as desired.

Suppose that $(p, q) \in R_{2}$. Because p is adjacent to h_{0} and h_{2}, we find that $g(p) \in$ $\left\{h_{1}, h_{3}\right\}$. Because q is adjacent to h_{0}, we find that $g(q) \in\left\{h_{0}, h_{1}, h_{3}\right\}$. If $g(q)=$ h_{0}, then g maps b_{p} to h_{1}, and consequently, $g(p)=h_{1}$. If $g(q)=h_{1}$, then we do
not investigate further; we allow g to map p to h_{1} or h_{3}. If $g(q)=h_{3}$, then g maps b_{p} to h_{2}, and consequently, a_{p} to h_{3}, implying that $g(p)=h_{3}$. Hence, we find that $(f(p), f(q)) \in\{(1,0),(1,1),(3,1),(3,3)\}=S_{2}$, as desired.

Suppose that $(p, q) \in R_{3}$. Because both p and q are adjacent to both h_{0} and h_{2}, we find that $g(p) \in\left\{h_{1}, h_{3}\right\}$ and $g(q) \in\left\{h_{1}, h_{3}\right\}$. If $g(p)=h_{1}$, then g maps a_{p} to h_{0}, and consequently, c_{q} to h_{3}, implying that $g(q)=h_{3}$. Hence, we find that $(f(p), f(q)) \in$ $\{(1,3),(3,1),(3,3)\}=S_{3}$, as desired.

Suppose that $(p, q) \in R_{4}$. Because both p and q are adjacent to both h_{0} and h_{2}, we find that $g(p) \in\left\{h_{1}, h_{3}\right\}$ and $g(q) \in\left\{h_{1}, h_{3}\right\}$. If $g(q)=h_{3}$, then g maps d_{q} to h_{0}, and consequently, b_{p} to h_{1}, implying that $g(p)=h_{1}$. Hence, we find that $(f(p), f(q)) \in$ $\{(1,1),(1,3),(3,1)\}=S_{4}$, as desired. This completes the proof of Lemma 2

4 Surjective Homomorphisms

Vikas [19] constructed the following graph from a graph $G=(V, E)$ that contains H as an induced subgraph. For each vertex $v \in V_{G} \backslash V_{H}$ we add three new vertices u_{v}, w_{v}, y_{v} with edges $h_{0} u_{v}, h_{0} y_{v}, h_{1} u_{v}, h_{2} w_{v}, h_{2} y_{v}, h_{3} w_{v}, u_{v} v, u_{v} w_{v}, u_{v} y_{v}, v w_{v}, w_{v} y_{v}$. We say that a vertex u_{v}, w_{v} and y_{v} has type u, w, or y, respectively. We also add all edges between any two vertices $u_{v}, u_{v^{\prime}}$ and between any two vertices $w_{v}, w_{v^{\prime}}$ with $v \neq v^{\prime}$. For each edge $v v^{\prime}$ in $E_{G} \backslash E_{H}$ we choose an arbitrary orientation, say from v to v^{\prime}, and then add a new vertex $x_{v v^{\prime}}$ with edges $v x_{v v^{\prime}}, v^{\prime} x_{v v^{\prime}}, u_{v} x_{v v^{\prime}}, w_{v^{\prime}} x_{v v^{\prime}}$. We say that this new vertex has type x. The new graph G^{\prime} obtained from G is called an H-compactor of G. See Figure 5 for an example. This figure does not depict any self-loops, although formally G must have at least four self-loops, because G contains H as an induced subgraph. Just as for retractions, this is irrelevant, and we assume that G is irreflexive.

Fig. 5. The part of G^{\prime} that corresponds to edge $v v^{\prime} \in E_{G} \backslash E_{H}$ as displayed in [19]

Vikas [19] showed that a graph G retracts to H if and only if an (arbitrary) H compactor G^{\prime} of G retracts to H if and only if G^{\prime} compacts to H. Recall that an H compactor is of diameter 3 as observed by Ito et al. [16]. Our aim is to reduce the diameter in such a graph to 2 . This forces us to make a number of modifications. Firstly, we must remove a number of vertices of type x. Secondly, we can no longer choose the orientations regarding the remaining vertices of type x arbitrarily. Thirdly, we must connect the remaining x-type vertices to H via edges. In more detail, let G be a \mathcal{D} graph. For all vertices in G we create vertices of type u, v, w, y with incident edges as in the definition of a compactor. We then perform the following three steps.

1. Not creating all the vertices of type x

We do not create x-type vertices for the following edges in G : edges between two a type vertices, edges between two b-type vertices, edges between two c-type vertices, and edges between two d-type vertices.

2. Choosing the "right" orientation of the other edges of $\mathbf{G} \backslash \mathbf{H}$

For $(p, q) \in R_{i}$ and $1 \leq i \leq 4$, we choose x-type vertices $x_{a_{p} p}, x_{p b_{p}}, x_{a_{p} b_{p}}, x_{q c_{q}}$, $x_{q d_{q}}$, and $x_{d_{q} c_{q}}$. In addition we create the following x-type vertices. For $(p, q) \in R_{1}$ we choose $x_{p c_{q}}$. For $(p, q) \in R_{2}$ we choose $x_{q b_{p}}$. For $(p, q) \in R_{3}$ we choose $x_{a_{p} c_{q}}$. For $(p, q) \in R_{4}$ we choose $x_{d_{q} b_{p}}$.

3. Connecting the created x-type vertices to H

We add an edge between h_{0} and every vertex of type x that we created in Step 2. We also add an edge between h_{2} and every such vertex.

We call the resulting graph a semi-compactor of G and give two essential lemmas (proof of the first proceeds by simple analysis - a diameter table appears in the full version of this paper [17]).

Lemma 2. Let G be a \mathcal{D}-graph. Every semi-compactor of G has diameter 2 and a dominating non-edge.

Lemma 3. Let $G^{\prime \prime}$ be a semi-compactor of a \mathcal{D}-graph G. Then the following statements are equivalent:
(i) G retracts to H;
(ii) $G^{\prime \prime}$ retracts to H;
(iii) $G^{\prime \prime}$ compacts to H;
(iv) $G^{\prime \prime}$ has a vertex-surjective homomorphism to H.

Proof. We show the following implications: $(i) \Rightarrow(i i),(i i) \Rightarrow(i),(i i) \Rightarrow(i i i)$, $(i i i) \Rightarrow(i i),(i i i) \Rightarrow(i v)$, and $(i v) \Rightarrow(i i i)$.
" $(i) \Rightarrow(i i)$ " Let f be a retraction from G to H. We show how to extend f to a retraction from $G^{\prime \prime}$ to H. We observe that every vertex of type u can only be mapped to h_{0} or h_{1}, because such a vertex is adjacent to h_{0} and h_{1}. We also observe that every vertex of type w can only be mapped to h_{2} or h_{3}, because such a vertex is adjacent to h_{2} and h_{3}. This implies the following. Let $v \in V_{G} \backslash V_{H}$. If $f(v)=h_{0}$ or $f(v)=h_{1}$, then w_{v} must be mapped to h_{3} or h_{2}, respectively. Consequently, u_{v} must be mapped to h_{0} or h_{1}, respectively, due to the edge $u_{v} w_{v}$. If $f(v)=h_{2}$ or $f(v)=h_{3}$, then u_{v} must
be mapped to h_{1} or h_{0}, respectively. Consequently, w_{v} must be mapped to h_{2} or h_{3}, respectively, due to the edge $u_{v} w_{v}$. Hence, $f(v)$ fixes the mapping of the vertices u_{v} or w_{v}, and either u_{v} is mapped to h_{1} or w_{v} is mapped to h_{3}. Note that both vertices are adjacent to y_{v}. Then, because y_{v} can only be mapped to h_{1} or h_{3} due to the edges $h_{0} y_{v}$ and $h_{2} y_{v}$, the mapping of y_{v} is fixed as well; if u_{v} is mapped to h_{1} then y_{v} is mapped to h_{1}, and if w_{v} is mapped to h_{3} then y_{v} is mapped to h_{3}.

What is left to do is to verify whether we can map the vertices of type x. For this purpose we refer to Table [5] where v, v^{\prime} denote two adjacent vertices of $V_{G} \backslash V_{H}$. Every possible combination of $f(v)$ and $f\left(v^{\prime}\right)$ corresponds to a row in this table. As we have just shown, this fixes the image of the vertices $u_{v}, u_{v^{\prime}}, w_{v}, w_{v^{\prime}}, y_{v^{\prime}}$ and y_{v}. For $x_{v v^{\prime}}$ we use its adjacencies to v, v^{\prime}, u_{v} and $w_{v^{\prime}}$ to determine potential images. For some cases, this number of potential images is not one but two. This is shown in the last column of Table 5, here we did not take into account that every $x_{v v^{\prime}}$ is adjacent to h_{0} and h_{2} in our construction. Because of these adjacencies, every $x_{v v^{\prime}}$ can only be mapped to h_{1} or h_{3}. In the majority of the 12 rows in Table 5 we have this choice; the exceptions are row 4 and row 9 . In row 4 and 9 , we find that $x_{v v^{\prime}}$ can only be mapped to one image, which is h_{0} or h_{2}, respectively. By construction, we have that $\left(v, v^{\prime}\right)$ belongs to

$$
\left\{\left(a_{p}, p\right),\left(p, b_{p}\right),\left(a_{p}, b_{p}\right),\left(q, c_{q}\right),\left(q, d_{q}\right),\left(d_{q}, c_{q}\right),\left(p, c_{q}\right),\left(q, b_{p}\right),\left(a_{p}, c_{q}\right),\left(d_{q}, b_{p}\right)\right\}
$$

We first show that row 4 cannot occur. In order to obtain a contradiction, suppose that row 4 does occur, i.e., that $f(v)=h_{1}$ and $f\left(v^{\prime}\right)=h_{0}$ for some $v, v^{\prime} \in V_{G} \backslash V_{H}$. Due to their adjacencies with vertices of H, every vertex of type a is mapped to h_{0} or h_{3}, every vertex of type b to h_{1} or h_{2}, every vertex of type c to h_{2} or h_{3} and every vertex of type d to h_{0} or h_{1}. This means that v can only be p, q, b_{p}, or d_{q}, whereas v^{\prime} can only be p, q, a_{p} or d_{q}. If $v=p$ then $v^{\prime} \in\left\{b_{p}, c_{q}\right\}$. If $v=q$ then $v^{\prime} \in\left\{c_{q}, d_{q}, b_{p}\right\}$. If $v=b_{p}$ then v^{\prime} cannot be chosen. If $v=d_{q}$ then $v^{\prime} \in\left\{c_{q}, b_{p}\right\}$. Hence, we find that $v=q$ and $v^{\prime}=d_{q}$. However, then f is not a retraction from G to H, because c_{q} is adjacent to d_{q}, q, h_{2}, h_{3}, and f maps these vertices to $h_{0}, h_{1}, h_{2}, h_{3}$, respectively. Hence, row 4 does not occur.

We now show that row 9 cannot occur. In order to obtain a contradiction, suppose that row 9 does occur, i.e., that $f(v)=h_{2}$ and $f\left(v^{\prime}\right)=h_{3}$. As in the previous case, we deduce that every vertex of type a is mapped to h_{0} or h_{3}, every vertex of type b to h_{1} or h_{2}, every vertex of type c to h_{2} or h_{3} and every vertex of type d to h_{0} or h_{1}. Moreover, every vertex of type ℓ or r cannot be mapped to h_{2}, because it is adjacent to h_{0}. Then v can only be b_{p} or c_{q}, and v^{\prime} can only be p, q, a_{p} or c_{q}. However, if $v=b_{p}$ or $v=c_{q}$ then v^{\prime} cannot be chosen. Hence, row 9 cannot occur, and we conclude that f can be extended to a retraction from $G^{\prime \prime}$ to H, as desired.
" $(i i) \Rightarrow(i)$ " Let f be a retraction from $G^{\prime \prime}$ to H. Then the restriction of f to V_{G} is a retraction from G to H. Hence, this implication is valid.
" $(i i) \Rightarrow(i i i)$ " Every retraction from $G^{\prime \prime}$ to H is an edge-surjective homomorphism, so a fortiori a compaction from $G^{\prime \prime}$ to H.
" $(i i i) \Rightarrow($ ii $)$ " Let f be a compaction from $G^{\prime \prime}$ to H. We will show that f is without loss of generality a retraction from $G^{\prime \prime}$ to H. Our proof goes along the same lines as the proof of Lemma 2.1.2 in Vikas [19], i.e., we use the same arguments but in addition we must examine a few more cases due to our modifications in steps $1-3$; we therefore include all the proof details below.

Table 5. Determining a retraction from $G^{\prime \prime}$ to H

v	v^{\prime}	u_{v}	$u_{v^{\prime}}$	w_{v}	$w_{v^{\prime}}$	y_{v}	$y_{v^{\prime}}$	$x_{v v^{\prime}}$
h_{0}	h_{0}	h_{0}	h_{0}	h_{3}	h_{3}	h_{3}	h_{3}	h_{0} / h_{3}
h_{0}	h_{1}	h_{0}	h_{1}	h_{3}	h_{2}	h_{3}	h_{1}	h_{1}
h_{0}	h_{3}	h_{0}	h_{0}	h_{3}	h_{3}	h_{3}	h_{3}	h_{0} / h_{3}
h_{1}	h_{0}	h_{1}	h_{0}	h_{2}	h_{3}	h_{1}	h_{3}	h_{0}
h_{1}	h_{1}	h_{1}	h_{1}	h_{2}	h_{2}	h_{1}	h_{1}	h_{1} / h_{2}
h_{1}	h_{2}	h_{1}	h_{1}	h_{2}	h_{2}	h_{1}	h_{1}	h_{1} / h_{2}
h_{2}	h_{1}	h_{1}	h_{1}	h_{2}	h_{2}	h_{1}	h_{1}	h_{1} / h_{2}
h_{2}	h_{2}	h_{1}	h_{1}	h_{2}	h_{2}	h_{1}	h_{1}	h_{1} / h_{2}
h_{2}	h_{3}	h_{1}	h_{0}	h_{2}	h_{3}	h_{1}	h_{3}	h_{2}
h_{3}	h_{0}	h_{0}	h_{0}	h_{3}	h_{3}	h_{3}	h_{3}	h_{0} / h_{3}
h_{3}	h_{2}	h_{0}	h_{1}	h_{3}	h_{2}	h_{3}	h_{1}	h_{3}
h_{3}	h_{3}	h_{0}	h_{0}	h_{3}	h_{3}	h_{3}	h_{3}	h_{0} / h_{3}

We let U consist of h_{0}, h_{1} and all vertices of type u. Similarly, we let W consist of h_{2}, h_{3} and all vertices of type w. Because U forms a clique in G, we find that $f(U)$ is a clique in H. This means that $1 \leq|f(U)| \leq 2$. By the same arguments, we find that $1 \leq f(W) \leq 2$.

We first prove that $|f(U)|=|f(W)|=2$. In order to derive a contradiction, suppose that $|f(U)| \neq 2$. Then $f(U)$ has only one vertex. By symmetry, we may assume that f maps every vertex of U to h_{0}; otherwise we can redefine f. Because every vertex of $G^{\prime \prime}$ is adjacent to a vertex in U, we find that $G^{\prime \prime}$ contains no vertex that is mapped to h_{2} by f. This is not possible, because f is a compaction from $G^{\prime \prime}$ to H. Hence $|f(U)|=2$, and by the same arguments, $|f(W)|=2$. Because U is a clique, we find that $f(U) \neq\left\{h_{0}, h_{2}\right\}$ and $f(U) \neq\left\{h_{1}, h_{3}\right\}$. Hence, by symmetry, we assume that $f(U)=\left\{h_{0}, h_{1}\right\}$.

We now prove that $f(W)=\left\{h_{2}, h_{3}\right\}$. In order to obtain a contradiction, suppose that $f(W) \neq\left\{h_{2}, h_{3}\right\}$. Because f is a compaction from $G^{\prime \prime}$ to H, there exists an edge st in $G^{\prime \prime}$ with $f(s)=h_{2}$ and $f(t)=h_{3}$. Because $f(U)$ only contains vertices mapped to h_{0} or h_{1}, we find that $s \notin U$ and $t \notin U$. Because we assume that $f(W) \neq\left\{h_{2}, h_{3}\right\}$, we find that st is not one of $w_{v} h_{2}, w_{v} h_{3}, h_{2} h_{3}$. Hence, st is one of the following edges

$$
v w_{v}, w_{v} y_{v}, v x_{v v^{\prime}}, y_{v} h_{2}, v h_{2}, v h_{3}, v v^{\prime}, v^{\prime} x_{v v^{\prime}}, w_{v^{\prime}} x_{v v^{\prime}}, x_{v v^{\prime}} h_{2}
$$

where $v, v^{\prime} \in V_{G} \backslash V_{H}$. We must consider each of these possibilities.
If $s t \in\left\{v w_{v}, w_{v} y_{v}, v x_{v v^{\prime}}\right\}$ then $f\left(u_{v}\right) \in\left\{h_{2}, h_{3}\right\}$, because u_{v} is adjacent to $v, w_{v}, y_{v}, x_{v v^{\prime}}$. However, this is not possible because $u_{v} \in\left\{h_{0}, h_{1}\right\}$. If $s t=y_{v} h_{2}$, then $f\left(w_{v}\right)=h_{2}$ or $f\left(w_{v}\right)=h_{3}$, because w_{v} is adjacent to y_{v} and h_{2}. If $f\left(w_{v}\right)=f\left(y_{v}\right)$, then $f\left(w_{v}\right) \neq f\left(h_{2}\right)$, and consequently, $\left\{f\left(w_{v}\right), f\left(h_{2}\right)\right\}=\left\{h_{2}, h_{3}\right\}$. This means that $f(W)=\left\{h_{2}, h_{3}\right\}$, which we assumed is not the case. Hence, $f\left(w_{v}\right) \neq f\left(y_{v}\right)$. Then f maps the edge $w_{v} y_{v}$ to $h_{2} h_{3}$, and we return to the previous case. We can repeat the
same arguments if $s t=v h_{2}$ or $s t=v h_{3}$. Hence, we find that $s t$ cannot be equal to those edges either.

If $s t=v v^{\prime}$, then by symmetry we may assume without loss of generality that $f(v)=$ h_{2} and $f\left(v^{\prime}\right)=h_{3}$. Consequently, $f\left(u_{v}\right)=h_{1}$, because $u_{v} \in U$ is adjacent to v, and can only be mapped to h_{0} or h_{1} By the same reasoning, $f\left(u_{v^{\prime}}\right)=h_{0}$. Because w_{v} is adjacent to v with $f(v)=h_{2}$ and to u_{v} with $f\left(u_{v}\right)=h_{1}$, we find that $f\left(w_{v}\right) \in$ $\left\{h_{1}, h_{2}\right\}$. Because $w_{v^{\prime}}$ is adjacent to v^{\prime} with $f\left(v^{\prime}\right)=h_{3}$ and to $u_{v^{\prime}}$ with $f\left(w_{v^{\prime}}\right)=h_{0}$, we find that $f\left(w_{v^{\prime}}\right) \in\left\{h_{0}, h_{3}\right\}$. Recall that $f(W) \neq\left\{h_{2}, h_{3}\right\}$. Then, because w_{v} and $w_{v^{\prime}}$ are adjacent, we find that $f\left(w_{v}\right)=h_{1}$ and $f\left(w_{v^{\prime}}\right)=h_{0}$. Suppose that $x_{v v^{\prime}}$ exists. Then $x_{v v^{\prime}}$ is adjacent to vertices v with $f(v)=h_{2}$, to v^{\prime} with $f\left(v^{\prime}\right)=h_{3}$, to u_{v} with $f\left(u_{v}\right)=h_{1}$ and to $w_{v^{\prime}}$ with $f\left(w_{v^{\prime}}\right)=h_{0}$. This is not possible. Hence $x_{v v^{\prime}}$ cannot exist. This means that v, v^{\prime} are both of type a, both of type b, both of type c or both of type d. If v, v^{\prime} are both of type a or both of type d, then $f\left(h_{0}\right) \in\left\{h_{2}, h_{3}\right\}$, which is not possible because $h_{0} \in U$ and $f(U) \in\left\{h_{0}, h_{1}\right\}$. If v, v^{\prime} are both of type b, we apply the same reasoning with respect to h_{1}. Suppose that v, v^{\prime} are both of type c. Then both v and v^{\prime} are adjacent to h_{2}. This means that $f\left(h_{2}\right) \in\left\{h_{2}, h_{3}\right\}$. Then either $\left\{f(v), f\left(h_{2}\right)\right\}=\left\{h_{2}, h_{3}\right\}$ or $\left\{f\left(v^{\prime}\right), f\left(h_{2}\right)\right\}=\left\{h_{2}, h_{3}\right\}$. Hence, by considering either the edge $v h_{2}$ or $v^{\prime} h_{2}$ we return to a previous case. We conclude that $s t \neq v v^{\prime}$.

If $s t=v^{\prime} x_{v v^{\prime}}$ then $f(v) \in\left\{h_{2}, h_{3}\right\}$, because v is adjacent to v^{\prime} and $x_{v v^{\prime}}$. Then one of $v v^{\prime}$ or $v x_{v v^{\prime}}$ maps to $h_{2} h_{3}$, and we return to a previous case. Hence, we obtain st $\neq v^{\prime} x_{v v^{\prime}}$. If $s t=w_{v^{\prime}} x_{v v^{\prime}}$ then $f\left(v^{\prime}\right) \in\left\{h_{2}, h_{3}\right\}$, because v^{\prime} is adjacent to w^{\prime} and $x_{v v^{\prime}}$. Then one of $v v^{\prime}$ or $v^{\prime} x_{v v^{\prime}}$ maps to $h_{2} h_{3}$, and we return to a previous case. Hence, we obtain $s t \neq w_{v^{\prime}} x_{v v^{\prime}}$. If $s t=x_{v v^{\prime}} h_{2}$ then $f\left(w_{v^{\prime}}\right) \in\left\{h_{2}, h_{3}\right\}$, because $w_{v^{\prime}}$ is adjacent to $x_{v v^{\prime}}$ and h_{2}. Because $f(W) \neq\left\{h_{2}, h_{3}\right\}$, we find that $f\left(w_{v^{\prime}}\right)=f\left(h_{2}\right)$. Then $w_{v^{\prime}} x_{v v^{\prime}}$ is mapped to $h_{2} h_{3}$, and we return to a previous case. Hence, st $\neq x_{v v^{\prime}} h_{2}$. We conclude that $f(W)=\left\{h_{2}, h_{3}\right\}$.

We now show that $f\left(h_{0}\right) \neq f\left(h_{1}\right)$. Suppose that $f\left(h_{0}\right)=f\left(h_{1}\right)$. By symmetry we may assume that $f\left(h_{0}\right)=f\left(h_{1}\right)=h_{0}$. Because $f(U)=\left\{h_{0}, h_{1}\right\}$, there exists a vertex u_{v} of type u with $f\left(u_{v}\right)=h_{1}$. Because w_{v} with $f\left(w_{v}\right) \in\left\{h_{2}, h_{3}\right\}$ is adjacent to u_{v}, we obtain $f\left(w_{v}\right)=h_{2}$. Because h_{2} with $f\left(h_{2}\right) \in\left\{h_{2}, h_{3}\right\}$ is adjacent to h_{1} with $f\left(h_{1}\right)=$ h_{0}, we obtain $f\left(h_{2}\right)=h_{3}$. However, then y_{v} is adjacent to h_{0} with $f\left(h_{0}\right)=h_{0}$, to u_{v} with $f\left(u_{v}\right)=h_{1}$, to w_{v} with $f\left(w_{v}\right)=h_{2}$, and to h_{2} with $f\left(h_{2}\right)=h_{3}$. This is not possible. Hence, $f\left(h_{0}\right) \neq f\left(h_{1}\right)$. By symmetry, we may assume that $f\left(h_{0}\right)=h_{0}$ and $f\left(h_{1}\right)=h_{1}$. Because h_{2} is adjacent to h_{1} with $f\left(h_{1}\right)=h_{1}$, and $f\left(h_{2}\right) \in\left\{h_{2}, h_{3}\right\}$ we obtain $f\left(h_{2}\right)=h_{2}$. Because h_{3} is adjacent to h_{0} with $f\left(h_{0}\right)=h_{0}$, and $f\left(h_{3}\right) \in$ $\left\{h_{2}, h_{3}\right\}$ we obtain $f\left(h_{3}\right)=h_{3}$. Hence, f is a retraction from $G^{\prime \prime}$ to H, as desired. " $(i i i) \Rightarrow(i v)$ " and " $(i v) \Rightarrow(i i i)$ " follow from the equivalence between statements 3 and 6 in Proposition 1 after recalling that $G^{\prime \prime}$ has diameter 2 due to Lemma 2

Our main result follows from Lemmas 2 and 3, in light of Theorem 2 (note that all constructions may be carried out in polynomial time).

Theorem 3. The Surjective H-Homomorphism problem is NP-complete even for graphs of diameter 2 with a dominating non-edge.

References

1. Brandstädt, A., Dragan, F.F., Le, V.B., Szymczak, T.: On stable cutsets in graphs. Discrete Appl. Math. 105, 39-50 (2000)
2. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of LICS 2003, pp. 321-330 (2003)
3. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34, 720-742 (2005)
4. Cameron, K., Eschen, E.M., Hoáng, C.T., Sritharan, R.: The complexity of the list partition problem for graphs. SIAM J. Discrete Math. 21, 900-929 (2007)
5. Cook, K., Dantas, S., Eschen, E.M., Faria, L., de Figueiredo, C.M.H., Klein, S.: $2 K_{2}$ vertexset partition into nonempty parts. Discrete Math. 310, 1259-1264 (2010)
6. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8, 51-53 (1984)
7. Dantas, S., de Figueiredo, C.M.H., Gravier, S., Klein, S.: Finding H-partitions efficiently. RAIRO-Theoret. Inf. Appl. 39, 133-144 (2005)
8. Dantas, S., Maffray, F., Silva, A.: $2 K_{2}$-partition of some classes of graphs. Discrete Applied Mathematics (to appear)
9. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Combin. Theory Ser. B 72, 236-250 (1998)
10. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16, 449478 (2003)
11. de Figueiredo, C.M.H.: The P versus NP-complete dichotomy of some challenging problems in graph theory. Discrete Applied Mathematics (to appear)
12. Fleischner, H., Mujuni, E., Paulusma, D., Szeider, S.: Covering graphs with few complete bipartite subgraphs. Theoret. Comput. Sci. 410, 2045-2053 (2009)
13. Golovach, P.A., Paulusma, D., Song, J.: Computing vertex-surjective homomorphisms to partially reflexive trees. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 261-274. Springer, Heidelberg (2011)
14. Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial Theory, Series B 48, 92-110 (1990)
15. Ito, T., Kamiński, M., Paulusma, D., Thilikos, D.M.: Parameterizing Cut Sets in a Graph by the Number of Their Components. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 605-615. Springer, Heidelberg (2009)
16. Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: On disconnected cuts and separators. Discrete Applied Mathematics (to appear)
17. Martin, B., Paulusma, D.: The Computational Complexity of Disconnected Cut and 2K2Partition,http://arxiv.org/abs/1104.4779
18. Teixeira, R.B., Dantas, S., de Figueiredo, C.M.H.: The external constraint 4 nonempty part sandwich problem. Discrete Applied Mathematics 159, 661-673 (2011)
19. Vikas, N.: Computational complexity of compaction to reflexive cycles. SIAM Journal on Computing 32, 253-280 (2002)
20. Vikas, N.: Compaction, Retraction, and Constraint Satisfaction. SIAM Journal on Computing 33, 761-782 (2004)
21. Vikas, N.: A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results. J. Comput. Syst. Sci. 71, 406-439 (2005)
22. Whitesides, S.H.: An algorithm for finding clique cut-sets. Inform. Process. Lett. 12, 31-32 (1981)

[^0]: * This work is supported by EPSRC (EP/G020604/1 and EP/G043434/1).

