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Abstract. For a connected graph G = (V, E), a subset U ⊆ V is called a
disconnected cut if U disconnects the graph and the subgraph induced by U is
disconnected as well. We show that the problem to test whether a graph has a
disconnected cut is NP-complete. This problem is polynomially equivalent to
the following problems: testing if a graph has a 2K2-partition, testing if a graph
allows a vertex-surjective homomorphism to the reflexive 4-cycle and testing if
a graph has a spanning subgraph that consists of at most two bicliques. Hence,
as an immediate consequence, these three decision problems are NP-complete as
well. This settles an open problem frequently posed in each of the four settings.

1 Introduction

We solve an open problem that showed up as a missing case (often the missing case)
in a number of different research areas arising from connectivity theory, graph covers
and graph homomorphisms. Before we explain how these areas are related, we briefly
describe them first. Throughout the paper, we consider undirected finite graphs that
have no multiple edges. Unless explicitly stated otherwise they do not have self loops
either. We denote the vertex set and edge set of a graph G by VG and EG, respectively.
If no confusion is possible, we may omit the subscripts. The complement of a graph
G = (V, E) is the graph G = (V, {uv /∈ E | u �= v}). For a subset U ⊆ VG, we
let G[U ] denote the subgraph of G induced by U , which is the graph (U, {uv | u, v ∈
U and uv ∈ EG}).

1.1 Vertex Cut Sets

A maximal connected subgraph of G is called a component of G. A vertex cut (set) or
separator of a graph G = (V, E) is a subset U ⊂ V such that G[V \U ] contains at least
two components.

Vertex cuts play an important role in graph connectivity, and in the literature various
kinds of vertex cuts have been studied. For instance, a cut U of a graph G = (V, E) is
called a k-clique cut if G[U ] has a spanning subgraph consisting of k complete graphs;
a strict k-clique cut if G[U ] consists of k components that are complete graphs; a stable
cut if U is an independent set; and a matching cut if EG[U ] is a matching. The problem
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that asks whether a graph has a k-clique cut is solvable in polynomial time for k = 1,
as shown by Whitesides [22], and for k = 2 as shown by Cameron et al. [4]. The latter
authors also showed that deciding if a graph has a strict 2-clique cut can be solved
in polynomial time. On the other hand, the problems that ask whether a graph has a
stable cut or a matching cut, respectively, are NP-complete, as shown by Chvátal [6]
and Brandstädt et al. [1], respectively.

For a fixed constant k ≥ 1, a cut U of a connected graph G is called a k-cut of G
if G[U ] contains exactly k components. Testing if a graph has a k-cut is solvable in
polynomial time for k = 1, whereas it is NP-complete for every fixed k ≥ 2 [15]. For
k ≥ 1 and � ≥ 2, a k-cut U is called a (k, �)-cut of a graph G if G[V \U ] consists of
exactly � components. Testing if a graph has a (k, �)-cut is polynomial-time solvable
when k = 1, � ≥ 2, and NP-complete otherwise [15].

A cut U of a graph G is called disconnected if G[U ] contains at least two compo-
nents. We observe that U is a disconnected cut if and only if V \U is a disconnected cut
if and only if U is a (k, �)-cut for some k ≥ 2 and � ≥ 2. The following question was
posed in several papers [12,15,16] as an open problem.

Q1. How hard is it to test if a graph has a disconnected cut?

The problem of testing if a graph has a disconnected cut is called the DISCONNECTED

CUT problem. A disconnected cut U of a connected graph G = (V, E) is minimal if
G[(V \U) ∪ {u}] is connected for every u ∈ U . Recently, the corresponding decision
problem called MINIMAL DISCONNECTED CUT was shown to be NP-complete [16].

1.2 H-Partitions

A model graph H with VH = {h0, . . . , hk−1} has two types of edges: solid and dotted
edges, and an H-partition of a graph G is a partition of VG into k (nonempty) sets
V0, . . . , Vk−1 such that for all vertices u ∈ Vi, v ∈ Vj and for all 0 ≤ i < j ≤ k − 1
the following two conditions hold. Firstly, if hihj is a solid edge of H , then uv ∈ EG.
Secondly, if hihj is a dotted edge of H , then uv /∈ EG. There are no such restrictions
when hi and hj are not adjacent. Let 2K2 be the model graph with vertices h0, . . . , h3

and two solid edges h0h2, h1h3, and 2S2 be the model graph with vertices h0, . . . , h3

and two dotted edges h0h2, h1h3. We observe that a graph G has a 2K2-partition if and
only if its complement G has a 2S2-partition.

The following question was mentioned in several papers [5,7,8,11,18] as an open
problem.

Q2. How hard is it to test if a graph has a 2K2-partition?

One of the reasons for posing this question is that the (equivalent) cases H = 2K2

and H = 2S2 are the only two cases of model graphs on at most four vertices for
which the computational complexity of the corresponding decision problem, called
H-PARTITION, is still open; all other of such cases have been settled by Dantas et
al. [7]. Especially, 2K2-partitions have been well studied, see e.g. three very recent
papers of Cook et al. [5], Dantas, Maffray and Silva [8] and Teixeira, Dantas and
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de Figueiredo [18]. The first two papers [5,8] study the 2K2-PARTITION problem for
several graph classes, and the second paper [18] defines a new complexity class of
problems called 2K2-hard.

By a result on retractions of Hell and Feder [9], which we explain later, the list
versions of 2S2-PARTITION and 2K2-PARTITION are NP-complete. A variant on H-
partitions that allows empty blocks Vi in an H-partition is studied by Feder et al. [10],
whereas Cameron et al. [4] consider the list version of this variant.

1.3 Graph Covers

Let G be a graph and S be a set of (not necessarily vertex-induced) subgraphs of G
that has size |S|. The set S is a cover of G if every edge of G is contained in at least
one of the subgraphs in S. The set S is a vertex-cover of G if every vertex of G is
contained in at least one of the subgraphs in S. If all subgraphs in S are bicliques, that
is, complete connected bipartite graphs, then we speak of a biclique cover or a biclique
vertex-cover, respectively. Testing whether a graph has a biclique cover of size at most
k is polynomial-time solvable for any fixed k; it is even fixed-parameter tractable in k
as shown by Fleischner et al. [12]. The same authors [12] show that testing whether
a graph has a biclique vertex-cover of size at most k is polynomial-time solvable for
k = 1 and NP-complete for k ≥ 3. For k = 2, they show that this problem can be
solved in polynomial time for bipartite input graphs, and they pose the following open
problem.

Q3. How hard is it to test if a graph has a biclique vertex-cover of size 2?

The problem of testing if a graph has a biclique vertex-cover of size 2 is called the 2-
BICLIQUE VERTEX-COVER problem. In order to answer question Q3 we may without
loss of generality restrict to biclique vertex-covers in which every vertex is in exactly
one of the subgraphs in S (cf. [12]).

1.4 Graph Homomorphisms

A homomorphism from a graph G to a graph H is a mapping f : VG → VH that
maps adjacent vertices of G to adjacent vertices of H , i.e., f(u)f(v) ∈ EH whenever
uv ∈ EG. The problem H -HOMOMORPHISM tests whether a given graph G allows a
homomorphism to a graph H called the target which is fixed, i.e., not part of the input.
This problem is also known as H-COLORING. Hell and Nešetřil [14] showed that H-
HOMOMORPHISM is solvable in polynomial time if H is bipartite, and NP-complete
otherwise. Here, H does not have a self-loop xx, as otherwise we can map every vertex
of G to x.

A homomorphism f from a graph G to a graph H is surjective if for each x ∈ VH

there exists at least one vertex u ∈ VG with f(u) = x. This leads to the problem of
deciding if a given graph allows a surjective homomorphism to a fixed target graph H ,
which is called the SURJECTIVE H -HOMOMORPHISM or SURJECTIVE H -COLORING

problem. For this variant, the presence of a vertex with a self-loop in the target graph H
does not make the problem trivial. Such vertices are called reflexive, whereas vertices
with no self-loop are said to be irreflexive. A graph that contains zero or more reflexive
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vertices is called partially reflexive. In particular, a graph is reflexive if all its vertices are
reflexive, and a graph is irreflexive if all its vertices are irreflexive. Golovach, Paulusma
and Song [13] showed that for any fixed partially reflexive tree H , the SURJECTIVE

H -HOMOMORPHISM problem is polynomial-time solvable if the (possibly empty) set
of reflexive vertices in H induces a connected subgraph of H , and NP-complete oth-
erwise [13]. They mention that the smallest open case is the case in which H is the
reflexive 4-cycle denoted C4.

Q4. How hard is it to test if a graph has a surjective homomorphism to C4?

The following two notions are closely related to surjective homomorphisms. A homo-
morphism f from a graph G to an induced subgraph H of G is a retraction from G
to H if f(h) = h for all h ∈ VH . In that case we say that G retracts to H . For a
fixed graph H , the H-RETRACTION problem has as input a graph G that contains H
as an induced subgraph and is to test if G retracts to H . Hell and Feder [9] showed that
C4-RETRACTION is NP-complete.

We emphasize that a surjective homomorphism is vertex-surjective. A stronger no-
tion is to require a homomorphism from a graph G to a graph H to be edge-surjective,
which means that for any edge xy ∈ EH with x �= y there exists an edge uv ∈ EG

with f(u) = x and f(v) = y. Note that the edge-surjectivity condition only holds
for edges xy ∈ EH ; there is no such condition on the self-loops xx ∈ EH . An edge-
surjective homomorphism is also called a compaction. If f is a compaction from G to
H , we say that G compacts to H . The H-COMPACTION problem asks if a graph G
compacts to a fixed graph H . Vikas [19,20,21] determined the computational complex-
ity of this problem for several classes of fixed target graphs. In particular, he showed
that C4-COMPACTION is NP-complete [19].

1.5 The Relationships between Questions Q1–Q4

Before we explain how questions Q1–Q4 are related, we first introduce some new ter-
minology. The distance dG(u, v) between two vertices u and v in a graph G is the
number of edges in a shortest path between them. The diameter diam(G) is defined as
max{dG(u, v) | u, v ∈ V }. The edge contraction of an edge e = uv in a graph G
replaces the two end-vertices u and v with a new vertex adjacent to precisely those ver-
tices to which u or v were adjacent. If a graph H can be obtained from G by a sequence
of edge contractions, then G is said to be contractible to H . The biclique with partition
classes of size k and � is denoted Kk,�; it is called nontrivial if k ≥ 1 and � ≥ 1.

Proposition 1 ([15]). Let G be a connected graph. Then statements (1)–(5) are equiv-
alent:

(1) G has a disconnected cut.
(2) G has a 2S2-partition.
(3) G allows a vertex-surjective homomorphism to C4.
(4) G has a spanning subgraph that consists of exactly two nontrivial bicliques.
(5) G has a 2K2-partition.

If diam(G) = 2, then (1)–(5) are also equivalent to the following statements:
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(6) G allows a compaction to C4.
(7) G is contractible to some biclique Kk,� for some k, � ≥ 2.

Due to Proposition 1, questions Q1–Q4 are equivalent. Hence, by solving one of them
we solve them all. Moreover, every graph of diameter 1 has no disconnected cut, and
every graph of diameter at least 3 has a disconnected cut [12]. Hence, we may restrict
ourselves to graphs of diameter 2. Then, by solving one of Q1–Q4 we also determine the
computational complexity of C4-COMPACTION on graphs of diameter 2 and BICLIQUE

CONTRACTION on graphs of diameter 2; the latter problem is to test if a graph can be
contracted to a biclique Kk,� for some k, � ≥ 2. Recall that Vikas [19] showed that C4-
COMPACTION is NP-complete. However, the gadget in his NP-completeness reduction
has diameter 3 as observed by Ito et al. [16].

Our Result. We solve question Q4 by showing that the problem SURJECTIVE C4-
HOMOMORPHISM is NP-complete, even for graphs of diameter 2 that have a dominat-
ing non-edge. A pair of vertices in a graph is a dominating (non-)edge if the two vertices
of the pair are (non-)adjacent, and any other vertex in the graph is adjacent to at least
one of them. In contrast, Fleischner et al. [12] showed that this problem is polynomial-
time solvable on input graphs with a dominating edge. As a consequence of our result,
we find that the problems DISCONNECTED CUT, 2K2-PARTITION, 2S2-PARTITION,
and 2-BICLIQUE VERTEX-COVER are all NP-complete. Moreover, we also find that
the problems C4-COMPACTION and BICLIQUE CONTRACTION are NP-complete even
for graphs of diameter 2.

Our approach to prove NP-completeness is as follows. As mentioned before, we can
restrict ourselves to graphs of diameter 2. We therefore try to reduce the diameter in the
gadget of the NP-completeness proof of Vikas [19] for C4-COMPACTION from 3 to 2.
This leads to NP-completeness of SURJECTIVE C4-HOMOMORPHISM, because these
two problems coincide for graphs of diameter 2 due to Proposition 1. The proof that C4-
COMPACTION is NP-complete [19] has its roots in the proof that C4-RETRACTION is
NP-complete [9]. So far, it was only known that C4-RETRACTION stays NP-complete
for graphs of diameter 3 [16]. We start our proof by showing that C4-RETRACTION is
NP-compete even for graphs of diameter 2. The key idea is to base the reduction from
an NP-complete homomorphism (constraint satisfaction) problem that we obtain only
after a fine analysis under the algebraic conditions of Bulatov, Krokhin and Jeavons
[3]. We perform this analysis in Section 2 and present our NP-completeness proof for
C4-RETRACTION on graphs of diameter 2 in Section 3. This leads a special input graph
of the C4-RETRACTION problem, which enables us to modify the gadget of the proof of
Vikas [19] for C4-COMPACTION in order to get its diameter down to 2, as desired. We
explain this part in Section 4.

For reasons of space some simple proofs are omitted, these can be found in the full
version of this paper [17].

2 Constraint Satisfaction

The notion of a graph homomorphism can be generalized as follows. A structure is
a tuple A = (A; R1, . . . , Rk), where A is a set called the domain of A and Ri is an
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ni-ary relation on A for i = 1, . . . , k, i.e., a set of ni-tuples of elements from A. Note
that a graph G = (V, E) can be seen as a structure G = (V ; {(u, v), (v, u) | uv ∈ E}).
Throughout the paper we only consider finite structures, i.e., with a finite domain.

Let A = (A; R1, . . . , Rk) and B = (B; S1, . . . , Sk) be two structures, where each
Ri and Si are relations of the same arity ni. Then a homomorphism from A to B is a
mapping f : A → B such that (a1, . . . , ani) ∈ Ri implies (f(a1), . . . , f(ani)) ∈ Si

for every i and every ni-tuple (a1, . . . , ani) ∈ Ani . The decision problem that is to
test if a given structure A allows a homomorphism to a fixed structure B is called
the B-HOMOMORPHISM problem, also known as the B-CONSTRAINT SATISFACTION

problem.
Let A = (A; R1, . . . , Rk) be a structure. The power structure A� has domain A� and

for 1 ≤ i ≤ k, has relations

R�
i := {((a1

1, . . . , a
1
�), . . . , (a

ni
1 , . . . , ani

� )) | (a1
1, . . . , a

ni
1 ), . . . , (a1

� , . . . , a
ni

� ) ∈ Ri}.
An (l-ary) polymorphism of A is a homomorphism from A� to A for some integer �. A
1-ary polymorphism is an endomorphism. The set of polymorphisms of A is denoted
Pol(A).

A binary function f on a domain A is a semilattice function if f(h, (f(i, j)) =
f(f(h, i), j), f(i, j) = f(j, i), and f(i, i) = i for all i, j ∈ A. A ternary function f
is a Mal’tsev function if f(i, j, j) = f(j, j, i) = i for all i, j ∈ A. A ternary function
f is a majority function if f(h, h, i) = f(h, i, h) = f(i, h, h) = h for all h, i ∈ A.
On the Boolean domain {0, 1}, we may consider propositional functions. The only two
semilattice functions on the Boolean domain are the binary function ∧, which maps
(h, i) to (h ∧ i), which is 1 if h = i = 1 and 0 otherwise, and the binary function ∨
which maps (h, i) to (h∨ i), which is 0 if h = i = 0 and 1 otherwise. We may consider
each of these functions on any two-element domain (where we view one element as 0
and the other as 1). For a function f on B, and a subset A ⊆ B, let f|A be the restriction
of f to A.

A structure is a core if all of its endomorphisms are automorphisms, i.e., are invert-
ible. We will make use of the following theorem from Bulatov, Krokhin and Jeavons [3]
(it appears in this form in Bulatov [2]).

Theorem 1 ([2,3]). Let B = (B; S1, . . . , Sk) be a core and A ⊆ B be a subset of size
|A| = 2 that as a unary relation is in B. If for each f ∈ Pol(B), f|A is not majority,
semilattice or Mal’tsev, then B-HOMOMORPHISM is NP-complete.

Let D be the structure on domain D = {0, 1, 3} with four binary relations

S1 := {(0, 3), (1, 1), (3, 1), (3, 3)} S3 := {(1, 3), (3, 1), (3, 3)}
S2 := {(1, 0), (1, 1), (3, 1), (3, 3)} S4 := {(1, 1), (1, 3), (3, 1)}.

Proposition 2. The D-HOMOMORPHISM problem is NP-complete.

Proof. We use Theorem 1. We first show that D is a core. Let g be an endomorphism
of D. If g(0) = 3 then g(1) = 3 by preservation of S2, i.e., as otherwise (1, 0) ∈ S2

does not imply (g(1), g(0)) ∈ S2. However, (1, 1) ∈ S4 but (g(1), g(1)) = (3, 3) /∈
S4. Hence g(0) �= 3. If g(0) = 1 then g(3) = 1 by preservation of S1. However,
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(3, 3) ∈ S3 but (g(3), g(3)) = (1, 1) /∈ S3. Hence g(0) �= 1. This means that g(0) = 0.
Consequently, g(1) = 1 by preservation of S2, and g(3) = 3 by preservation of S1.
Hence, g is the identity mapping, which is an automorphism, as desired.

Let A = {1, 3}, which is in D in the form of S1(p, p) (or S2(p, p)). Suppose that
f ∈ Pol(D). In order to prove Proposition 2, we must show that f|A is neither majority
nor semilattice nor Mal’tsev.

Suppose that f|A is semilattice. Then f|A = ∧ or f|A = ∨. If f = ∧, then either
f(1, 1) = 1, f(1, 3) = 3, f(3, 1) = 3, f(3, 3) = 3, or f(1, 1) = 1, f(1, 3) = 1,
f(3, 1) = 1, f(3, 3) = 3 depending on how the elements 1, 3 correspond to the two
elements of the Boolean domain. The same holds for f = ∨. Suppose that f(1, 1) = 1,
f(1, 3) = 3, f(3, 1) = 3, f(3, 3) = 3. By preservation of S4 we find that f(1, 3) = 1
due to f(3, 1) = 3. This is not possible. Suppose that f(1, 1) = 1, f(1, 3) = 1,
f(3, 1) = 1, f(3, 3) = 3. By preservation of S3 we find that f(1, 3) = 3 due to
f(3, 1) = 1. This is not possible.

Suppose that f|A is Mal’tsev. By preservation of S4, we find that f(1, 1, 3) = 1 due
to f(3, 1, 1) = 3. However, because f(1, 1, 3) = 3, this is not possible.

Suppose that f|A is majority. By preservation of S1, we deduce that f(0, 3, 1) ∈
{0, 3} due to f(3, 3, 1) = 3, and that f(0, 3, 1) ∈ {1, 3} due to f(3, 1, 1) = 1. Thus,
f(0, 3, 1) = 3. By preservation of S2, however, we deduce that f(0, 3, 1) ∈ {0, 1}
due to f(1, 3, 1) = 1. This is a contradiction. Hence, we have completed the proof of
Proposition 2. �

3 Retractions

In the remainder of this paper, let H denote the reflexive 4-vertex cycle C4, on vertices
h0, . . . , h3, with edges h0h1, h1h2, h2h3, h3h0, h0h0, h1h1, h2h2 and h3h3. We prove
that H-RETRACTION is NP-complete for graphs of diameter 2 by a reduction from
D-HOMOMORPHISM.

Let A = (A; R1, . . . , R4) be an instance of D-HOMOMORPHISM, where we may
assume that each Ri is a binary relation. From A we construct a graph G as follows.
We let the elements in A correspond to vertices of G. If (p, q) ∈ Ri for some 1 ≤ i ≤ 4,
then we say that vertex p in G is of type � and vertex q in G is of type r. Note that a
vertex can be of type � and r simultaneously, because it can be the first element in a pair
in R1 ∪ · · · ∪R4 and the second element of another such pair. For each (p, q) ∈ Ri and
1 ≤ i ≤ 4 we introduce four new vertices ap, bp, cq, dq with edges app, apbp, bpp, cqq,
cqdq and dqq. We say that a vertex ap, bp, cq, dq is of type a, b, c, d, respectively; note
that these vertices all have a unique type.

We now let the graph H be an induced subgraph of G (with distinct vertices h0, . . . ,
h3). Then formally G must have self-loops h0h0, . . . , h3h3. However, this is irrelevant
for our problem, and we may assume that G is irreflexive (since H is reflexive, it does
not matter – from the perspective of retraction – if G is reflexive, irreflexive or anything
inbetween). In G we join every a-type vertex to h0 and h3, every b-type vertex to h1

and h2, every c-type vertex to h2 and h3, and every d-type vertex to h0 and h1. We also
add an edge between h0 and every vertex of A.
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We continue the construction of G by describing how we distinguish between two
pairs belonging to different relations. If (p, q) ∈ R1, then we add the edges cqp and
qh2; see Figure 1. If (p, q) ∈ R2, then we add the edges h2p and bpq; see Figure 2. If
(p, q) ∈ R3, then we add the edges h2p, h2q and apcq; see Figure 3. If (p, q) ∈ R4,
then we add the edges h2p, h2q and bpdq; see Figure 4. We also add an edge between
any two vertices of type a, between any two vertices of type b, between any two vertices
of type c, and between any two vertices of type d. Note that this leads to four mutually
vertex-disjoint cliques in G. We call G a D-graph. The proof of Lemma 1 proceeds by
a simple analysis (a diameter table appears in the full version of this paper [17]).

bp

cq

ap

dq
h30h

h1 h2

q

p

Fig. 1. The part of a D-graph G for a pair
(p, q) ∈ R1

bp

dq

cq

ap

h1 h2

h30h

p

q

Fig. 2. The part of a D-graph G for a
pair (p, q) ∈ R2

ap bp

cq

dq 0h

h1 h2

h3

p

q

Fig. 3. The part of a D-graph G for a pair
(p, q) ∈ R3

ap bp

cq

dq 0h

h2

h3

h1

q

p

Fig. 4. The part of a D-graph G for a
pair (p, q) ∈ R4

Lemma 1. Every D-graph has diameter 2 and a dominating non-edge.

Recall that Feder and Hell [9] showed that H-RETRACTION is NP-complete. Ito et
al. [16] observed that H-RETRACTION stays NP-complete on graphs of diameter 3.
We need the following. Lemma 1 and Theorem 2 together imply that H-RETRACTION

is NP-complete for graphs of diameter 2 that have a dominating non-edge.
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Theorem 2. The H-RETRACTION problem is NP-complete even for D-graphs.

Proof. We recall that H-RETRACTION is in NP, because we can guess a partition of
the vertex set of the input graph G into four (non-empty) sets and verify in polynomial
time if this partition corresponds to a retraction from G to H . From an instance A of D-
HOMOMORPHISM we construct a D-graph G. We claim thatA allows a homomorphism
to D if and only if G retracts to H .

First suppose that A allows a homomorphism f to D. We construct a mapping g
from VG to VH as follows. We let g(a) = hi if f(a) = i for all a ∈ A and g(hi) = hi

for i = 0, . . . , 3. Because f is a homomorphism from A to D, this leads to Tables 1–4,
which explain where ap, bp, cq and dq map under g, according to where p and q map.
From these, we conclude that g is a retraction from G to H . In particular, we note that
the edges cqp, bpq, apcq , and bpdq each map to an edge or self-loop in H when (p, q)
belongs to R1, . . . , R4, respectively.

Table 1. g-values when (p, q) ∈ R1

p q ap bp cq dq

h0 h3 h0 h1 h3 h0

h1 h1 h0 h1 h2 h1

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 2. g-values when (p, q) ∈ R2

p q ap bp cq dq

h1 h0 h0 h1 h3 h0

h1 h1 h0 h1 h2 h1

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 3. g-values when (p, q) ∈ R3

p q ap bp cq dq

h1 h3 h0 h1 h3 h0

h3 h1 h3 h2 h2 h1

h3 h3 h3 h2 h3 h0

Table 4. g-values when (p, q) ∈ R4

p q ap bp cq dq

h1 h1 h0 h1 h2 h1

h1 h3 h0 h1 h3 h0

h3 h1 h3 h2 h2 h1

To prove the reverse implication, suppose that G allows a retraction g to H . We
construct a mapping f : A → {0, 1, 2, 3} by defining f(a) = i if g(a) = hi for a ∈ A.
We claim that f is a homomorphism from A to D. In order to see this, we first note that
g maps all a-type vertices to {h0, h3}, all b-type vertices to {h1, h2}, all c-type vertices
to {h2, h3} and all d-type vertices to {h0, h1}. We now show that (p, q) ∈ Ri implies
that (f(p), f(q)) ∈ Si for i = 1, . . . , 4.

Suppose that (p, q) ∈ R1. Because p is adjacent to h0, we obtain g(p) ∈ {h0, h1, h3}.
Because q is adjacent to h0 and h2, we find that g(q) ∈ {h1, h3}. If g(p) = h0,
then g maps cq to h3, and consequently, g(q) = h3. If g(p) = h1, then g maps
cq to h2, and consequently dq to h1, implying that g(q) = h1. If g(p) = h3, then
we do not investigate further; we allow g to map q to h1 or h3. Hence, we find that
(f(p), f(q)) ∈ {(0, 3), (1, 1), (3, 1), (3, 3)} = S1, as desired.

Suppose that (p, q) ∈ R2. Because p is adjacent to h0 and h2, we find that g(p) ∈
{h1, h3}. Because q is adjacent to h0, we find that g(q) ∈ {h0, h1, h3}. If g(q) =
h0, then g maps bp to h1, and consequently, g(p) = h1. If g(q) = h1, then we do
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not investigate further; we allow g to map p to h1 or h3. If g(q) = h3, then g maps
bp to h2, and consequently, ap to h3, implying that g(p) = h3. Hence, we find that
(f(p), f(q)) ∈ {(1, 0), (1, 1), (3, 1), (3, 3)} = S2, as desired.

Suppose that (p, q) ∈ R3. Because both p and q are adjacent to both h0 and h2, we
find that g(p) ∈ {h1, h3} and g(q) ∈ {h1, h3}. If g(p) = h1, then g maps ap to h0, and
consequently, cq to h3, implying that g(q) = h3. Hence, we find that (f(p), f(q)) ∈
{(1, 3), (3, 1), (3, 3)} = S3, as desired.

Suppose that (p, q) ∈ R4. Because both p and q are adjacent to both h0 and h2, we
find that g(p) ∈ {h1, h3} and g(q) ∈ {h1, h3}. If g(q) = h3, then g maps dq to h0, and
consequently, bp to h1, implying that g(p) = h1. Hence, we find that (f(p), f(q)) ∈
{(1, 1), (1, 3), (3, 1)} = S4, as desired. This completes the proof of Lemma 2. �

4 Surjective Homomorphisms

Vikas [19] constructed the following graph from a graph G = (V, E) that contains H as
an induced subgraph. For each vertex v ∈ VG\VH we add three new vertices uv, wv, yv

with edges h0uv, h0yv, h1uv, h2wv, h2yv, h3wv, uvv, uvwv, uvyv, vwv, wvyv. We say
that a vertex uv, wv and yv has type u, w, or y, respectively. We also add all edges
between any two vertices uv, uv′ and between any two vertices wv, wv′ with v �= v′.
For each edge vv′ in EG\EH we choose an arbitrary orientation, say from v to v′, and
then add a new vertex xvv′ with edges vxvv′ , v′xvv′ , uvxvv′ , wv′xvv′ . We say that this
new vertex has type x. The new graph G′ obtained from G is called an H-compactor
of G. See Figure 5 for an example. This figure does not depict any self-loops, although
formally G must have at least four self-loops, because G contains H as an induced
subgraph. Just as for retractions, this is irrelevant, and we assume that G is irreflexive.

xvv’

v v’

yv

yv’
uv’ uv

h0

h1 h2

h3

wv’wv

Fig. 5. The part of G′ that corresponds to edge vv′ ∈ EG \ EH as displayed in [19]
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Vikas [19] showed that a graph G retracts to H if and only if an (arbitrary) H-
compactor G′ of G retracts to H if and only if G′ compacts to H . Recall that an H-
compactor is of diameter 3 as observed by Ito et al. [16]. Our aim is to reduce the
diameter in such a graph to 2. This forces us to make a number of modifications. Firstly,
we must remove a number of vertices of type x. Secondly, we can no longer choose the
orientations regarding the remaining vertices of type x arbitrarily. Thirdly, we must
connect the remaining x-type vertices to H via edges. In more detail, let G be a D-
graph. For all vertices in G we create vertices of type u, v, w, y with incident edges as
in the definition of a compactor. We then perform the following three steps.

1. Not creating all the vertices of type x
We do not create x-type vertices for the following edges in G: edges between two a-
type vertices, edges between two b-type vertices, edges between two c-type vertices,
and edges between two d-type vertices.

2. Choosing the “right” orientation of the other edges of G \ H
For (p, q) ∈ Ri and 1 ≤ i ≤ 4, we choose x-type vertices xapp, xpbp , xapbp , xqcq ,
xqdq , and xdqcq . In addition we create the following x-type vertices. For (p, q) ∈ R1

we choose xpcq . For (p, q) ∈ R2 we choose xqbp . For (p, q) ∈ R3 we choose xapcq . For
(p, q) ∈ R4 we choose xdqbp .

3. Connecting the created x-type vertices to H
We add an edge between h0 and every vertex of type x that we created in Step 2. We
also add an edge between h2 and every such vertex.

We call the resulting graph a semi-compactor of G and give two essential lemmas (proof
of the first proceeds by simple analysis – a diameter table appears in the full version of
this paper [17]).

Lemma 2. Let G be a D-graph. Every semi-compactor of G has diameter 2 and a
dominating non-edge.

Lemma 3. Let G′′ be a semi-compactor of a D-graph G. Then the following statements
are equivalent:

(i) G retracts to H;
(ii) G′′ retracts to H;

(iii) G′′ compacts to H;
(iv) G′′ has a vertex-surjective homomorphism to H .

Proof. We show the following implications: (i) ⇒ (ii), (ii) ⇒ (i), (ii) ⇒ (iii),
(iii) ⇒ (ii), (iii) ⇒ (iv), and (iv) ⇒ (iii).

“(i) ⇒ (ii)” Let f be a retraction from G to H . We show how to extend f to a retraction
from G′′ to H . We observe that every vertex of type u can only be mapped to h0 or h1,
because such a vertex is adjacent to h0 and h1. We also observe that every vertex of
type w can only be mapped to h2 or h3, because such a vertex is adjacent to h2 and
h3. This implies the following. Let v ∈ VG \ VH . If f(v) = h0 or f(v) = h1, then
wv must be mapped to h3 or h2, respectively. Consequently, uv must be mapped to h0

or h1, respectively, due to the edge uvwv . If f(v) = h2 or f(v) = h3, then uv must
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be mapped to h1 or h0, respectively. Consequently, wv must be mapped to h2 or h3,
respectively, due to the edge uvwv . Hence, f(v) fixes the mapping of the vertices uv or
wv , and either uv is mapped to h1 or wv is mapped to h3. Note that both vertices are
adjacent to yv. Then, because yv can only be mapped to h1 or h3 due to the edges h0yv

and h2yv, the mapping of yv is fixed as well; if uv is mapped to h1 then yv is mapped
to h1, and if wv is mapped to h3 then yv is mapped to h3.

What is left to do is to verify whether we can map the vertices of type x. For this
purpose we refer to Table 5, where v, v′ denote two adjacent vertices of VG \VH . Every
possible combination of f(v) and f(v′) corresponds to a row in this table. As we have
just shown, this fixes the image of the vertices uv, uv′ , wv , wv′ , yv′ and yv. For xvv′ we
use its adjacencies to v, v′, uv and wv′ to determine potential images. For some cases,
this number of potential images is not one but two. This is shown in the last column of
Table 5; here we did not take into account that every xvv′ is adjacent to h0 and h2 in
our construction. Because of these adjacencies, every xvv′ can only be mapped to h1

or h3. In the majority of the 12 rows in Table 5 we have this choice; the exceptions are
row 4 and row 9. In row 4 and 9, we find that xvv′ can only be mapped to one image,
which is h0 or h2, respectively. By construction, we have that (v, v′) belongs to

{(ap, p), (p, bp), (ap, bp), (q, cq), (q, dq), (dq, cq), (p, cq), (q, bp), (ap, cq), (dq , bp)}.
We first show that row 4 cannot occur. In order to obtain a contradiction, suppose that
row 4 does occur, i.e., that f(v) = h1 and f(v′) = h0 for some v, v′ ∈ VG \VH . Due to
their adjacencies with vertices of H , every vertex of type a is mapped to h0 or h3, every
vertex of type b to h1 or h2, every vertex of type c to h2 or h3 and every vertex of type
d to h0 or h1. This means that v can only be p, q, bp, or dq , whereas v′ can only be p, q,
ap or dq . If v = p then v′ ∈ {bp, cq}. If v = q then v′ ∈ {cq, dq, bp}. If v = bp then v′

cannot be chosen. If v = dq then v′ ∈ {cq, bp}. Hence, we find that v = q and v′ = dq .
However, then f is not a retraction from G to H , because cq is adjacent to dq, q, h2, h3,
and f maps these vertices to h0, h1, h2, h3, respectively. Hence, row 4 does not occur.

We now show that row 9 cannot occur. In order to obtain a contradiction, suppose
that row 9 does occur, i.e., that f(v) = h2 and f(v′) = h3. As in the previous case, we
deduce that every vertex of type a is mapped to h0 or h3, every vertex of type b to h1 or
h2, every vertex of type c to h2 or h3 and every vertex of type d to h0 or h1. Moreover,
every vertex of type � or r cannot be mapped to h2, because it is adjacent to h0. Then
v can only be bp or cq , and v′ can only be p, q, ap or cq . However, if v = bp or v = cq

then v′ cannot be chosen. Hence, row 9 cannot occur, and we conclude that f can be
extended to a retraction from G′′ to H , as desired.
“(ii) ⇒ (i)” Let f be a retraction from G′′ to H . Then the restriction of f to VG is a
retraction from G to H . Hence, this implication is valid.

“(ii) ⇒ (iii)” Every retraction from G′′ to H is an edge-surjective homomorphism, so
a fortiori a compaction from G′′ to H .

“(iii) ⇒ (ii)” Let f be a compaction from G′′ to H . We will show that f is without
loss of generality a retraction from G′′ to H . Our proof goes along the same lines as
the proof of Lemma 2.1.2 in Vikas [19], i.e., we use the same arguments but in addition
we must examine a few more cases due to our modifications in steps 1–3; we therefore
include all the proof details below.
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Table 5. Determining a retraction from G′′ to H

v v′ uv uv′ wv wv′ yv yv′ xvv′

h0 h0 h0 h0 h3 h3 h3 h3 h0/h3

h0 h1 h0 h1 h3 h2 h3 h1 h1

h0 h3 h0 h0 h3 h3 h3 h3 h0/h3

h1 h0 h1 h0 h2 h3 h1 h3 h0

h1 h1 h1 h1 h2 h2 h1 h1 h1/h2

h1 h2 h1 h1 h2 h2 h1 h1 h1/h2

h2 h1 h1 h1 h2 h2 h1 h1 h1/h2

h2 h2 h1 h1 h2 h2 h1 h1 h1/h2

h2 h3 h1 h0 h2 h3 h1 h3 h2

h3 h0 h0 h0 h3 h3 h3 h3 h0/h3

h3 h2 h0 h1 h3 h2 h3 h1 h3

h3 h3 h0 h0 h3 h3 h3 h3 h0/h3

We let U consist of h0, h1 and all vertices of type u. Similarly, we let W consist of
h2, h3 and all vertices of type w. Because U forms a clique in G, we find that f(U) is
a clique in H . This means that 1 ≤ |f(U)| ≤ 2. By the same arguments, we find that
1 ≤ f(W ) ≤ 2.

We first prove that |f(U)| = |f(W )| = 2. In order to derive a contradiction, suppose
that |f(U)| �= 2. Then f(U) has only one vertex. By symmetry, we may assume that
f maps every vertex of U to h0; otherwise we can redefine f . Because every vertex
of G′′ is adjacent to a vertex in U , we find that G′′ contains no vertex that is mapped
to h2 by f . This is not possible, because f is a compaction from G′′ to H . Hence
|f(U)| = 2, and by the same arguments, |f(W )| = 2. Because U is a clique, we find
that f(U) �= {h0, h2} and f(U) �= {h1, h3}. Hence, by symmetry, we assume that
f(U) = {h0, h1}.

We now prove that f(W ) = {h2, h3}. In order to obtain a contradiction, suppose
that f(W ) �= {h2, h3}. Because f is a compaction from G′′ to H , there exists an edge
st in G′′ with f(s) = h2 and f(t) = h3. Because f(U) only contains vertices mapped
to h0 or h1, we find that s /∈ U and t /∈ U . Because we assume that f(W ) �= {h2, h3},
we find that st is not one of wvh2, wvh3, h2h3. Hence, st is one of the following edges

vwv, wvyv, vxvv′ , yvh2, vh2, vh3, vv′, v′xvv′ , wv′xvv′ , xvv′h2,

where v, v′ ∈ VG \ VH . We must consider each of these possibilities.
If st ∈ {vwv, wvyv, vxvv′} then f(uv) ∈ {h2, h3}, because uv is adjacent to

v, wv, yv, xvv′ . However, this is not possible because uv ∈ {h0, h1}. If st = yvh2, then
f(wv) = h2 or f(wv) = h3, because wv is adjacent to yv and h2. If f(wv) = f(yv),
then f(wv) �= f(h2), and consequently, {f(wv), f(h2)} = {h2, h3}. This means that
f(W ) = {h2, h3}, which we assumed is not the case. Hence, f(wv) �= f(yv). Then
f maps the edge wvyv to h2h3, and we return to the previous case. We can repeat the
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same arguments if st = vh2 or st = vh3. Hence, we find that st cannot be equal to
those edges either.

If st = vv′, then by symmetry we may assume without loss of generality that f(v) =
h2 and f(v′) = h3. Consequently, f(uv) = h1, because uv ∈ U is adjacent to v, and
can only be mapped to h0 or h1 By the same reasoning, f(uv′) = h0. Because wv

is adjacent to v with f(v) = h2 and to uv with f(uv) = h1, we find that f(wv) ∈
{h1, h2}. Because wv′ is adjacent to v′ with f(v′) = h3 and to uv′ with f(wv′) = h0,
we find that f(wv′) ∈ {h0, h3}. Recall that f(W ) �= {h2, h3}. Then, because wv

and wv′ are adjacent, we find that f(wv) = h1 and f(wv′) = h0. Suppose that xvv′

exists. Then xvv′ is adjacent to vertices v with f(v) = h2, to v′ with f(v′) = h3, to
uv with f(uv) = h1 and to wv′ with f(wv′) = h0. This is not possible. Hence xvv′

cannot exist. This means that v, v′ are both of type a, both of type b, both of type c or
both of type d. If v, v′ are both of type a or both of type d, then f(h0) ∈ {h2, h3},
which is not possible because h0 ∈ U and f(U) ∈ {h0, h1}. If v, v′ are both of type b,
we apply the same reasoning with respect to h1. Suppose that v, v′ are both of type c.
Then both v and v′ are adjacent to h2. This means that f(h2) ∈ {h2, h3}. Then either
{f(v), f(h2)} = {h2, h3} or {f(v′), f(h2)} = {h2, h3}. Hence, by considering either
the edge vh2 or v′h2 we return to a previous case. We conclude that st �= vv′.

If st = v′xvv′ then f(v) ∈ {h2, h3}, because v is adjacent to v′ and xvv′ . Then
one of vv′ or vxvv′ maps to h2h3, and we return to a previous case. Hence, we obtain
st �= v′xvv′ . If st = wv′xvv′ then f(v′) ∈ {h2, h3}, because v′ is adjacent to w′

and xvv′ . Then one of vv′ or v′xvv′ maps to h2h3, and we return to a previous case.
Hence, we obtain st �= wv′xvv′ . If st = xvv′h2 then f(wv′) ∈ {h2, h3}, because wv′

is adjacent to xvv′ and h2. Because f(W ) �= {h2, h3}, we find that f(wv′) = f(h2).
Then wv′xvv′ is mapped to h2h3, and we return to a previous case. Hence, st �= xvv′h2.
We conclude that f(W ) = {h2, h3}.

We now show that f(h0) �= f(h1). Suppose that f(h0) = f(h1). By symmetry we
may assume that f(h0) = f(h1) = h0. Because f(U) = {h0, h1}, there exists a vertex
uv of type u with f(uv) = h1. Because wv with f(wv) ∈ {h2, h3} is adjacent to uv, we
obtain f(wv) = h2. Because h2 with f(h2) ∈ {h2, h3} is adjacent to h1 with f(h1) =
h0, we obtain f(h2) = h3. However, then yv is adjacent to h0 with f(h0) = h0, to uv

with f(uv) = h1, to wv with f(wv) = h2, and to h2 with f(h2) = h3. This is not
possible. Hence, f(h0) �= f(h1). By symmetry, we may assume that f(h0) = h0 and
f(h1) = h1. Because h2 is adjacent to h1 with f(h1) = h1, and f(h2) ∈ {h2, h3}
we obtain f(h2) = h2. Because h3 is adjacent to h0 with f(h0) = h0, and f(h3) ∈
{h2, h3} we obtain f(h3) = h3. Hence, f is a retraction from G′′ to H , as desired.
“(iii) ⇒ (iv)” and “(iv) ⇒ (iii)” follow from the equivalence between statements 3
and 6 in Proposition 1, after recalling that G′′ has diameter 2 due to Lemma 2. �
Our main result follows from Lemmas 2 and 3, in light of Theorem 2 (note that all
constructions may be carried out in polynomial time).

Theorem 3. The SURJECTIVE H -HOMOMORPHISM problem is NP-complete even for
graphs of diameter 2 with a dominating non-edge.
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