Skip to main content

Brain Tissue Classification of MR Images Using Fast Fourier Transform Based Expectation- Maximization Gaussian Mixture Model

  • Conference paper
Advances in Computing and Information Technology (ACITY 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 198))

Abstract

This paper proposes MR image segmentation based on Fast Fourier Transform based Expectation and Maximization Gaussian Mixture Model algorithm (GMM). No spatial correlation exists when classifying tissue type by using GMM and it also assumes that each class of the tissues is described by one Gaussian distribution but these assumptions lead to poor performance. It fails to utilize strong spatial correlation between neighboring pixels when used for the classification of tissues. The FFT based EM-GMM algorithm improves the classification accuracy as it takes into account of spatial correlation of neighboring pixels and as the segmentation done in Fourier domain instead of spatial domain. The solution via FFT is significantly faster compared to the classical solution in spatial domain — it is just O(N log 2N) instead of O(N^2) and therefore enables the use EM-GMM for high-throughput and real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grossman, R.J., McGowan, M.C.: Perspectives on Multiple Sclerosis. Am. J. Neuroradiol. 19, 1251–1265 (1998)

    Google Scholar 

  2. Khayati, R., Vafadust, M., Towhidkhah, F., Massood Nabavi, S.: Fully Automatic Segmentation of Multiple Sclerosis Lesions In Brain MR FLAIR images using Adaptive Mixtures. Computers in Biology and Medicine 38, 379–390 (2008)

    Article  Google Scholar 

  3. Soni, A.: Brain Tissue Classification of Magnetic Resonance Images Using Conditional Random Fields Department of Computer Sciences University of Wisconsin-Madison (2007)

    Google Scholar 

  4. Jagannathan: Classification of Magnetic Resonance Brain Images using Wavelets as Input To Support Vector Machine And Neural Network. Biomedical Signal Processing and Control 1, 86–92 (2006)

    Article  Google Scholar 

  5. Maitra, M., Chatterjee, A.: Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation. Med. Eng. Phys. (2007), doi:10.1016/j.medengphy.2007.06.009

    Google Scholar 

  6. Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine, 43–63 (2001)

    Google Scholar 

  7. Abdolmaleki, P., Mihara, F., Masuda, K., Buadu, L.D.: Neural Networks Analysis of Astrocytic Gliomas from MRI appearances. Cancer Letters 118, 69–78 (1997)

    Article  Google Scholar 

  8. Rosenbaum, T., Engelbrecht, V., Kroll, W., van Dorstenc, F.A., Hoehn-Berlagec, M., Lenard, H.-G.: MRI abnormalities in neurofibromatosis type 1 (NF1): a study of men and mice. Brain & Development 21, 268–273 (1999)

    Article  Google Scholar 

  9. Cocosco, C., Zijdenbos, A.P., Evans, A.C.: A Fully Automatic and Robust Brain MRI Tissue Classification Method. Medical Image Analysis 7, 513–527 (2003)

    Article  Google Scholar 

  10. El-dahshan, E.-S.A., Salem, A.-B.M., Youni, T.H.: A Hybrid Technique For Automatic MRI Brain Images Classification, STUDIA UNIV. Babes_Bolyai. Informatica LIV(1) (2009)

    Google Scholar 

  11. Gelenbe, E., Feng, Y., Krishnan, K.R.R.: Neural network methods for volumetric magnetic resonance imaging of the human brain. Proc. IEEE 84, 1488–1496 (1996)

    Article  Google Scholar 

  12. Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.C.: A Comparison Of Neural Network And Fuzzy Clustering Techniques In Segmenting Magnetic Resonance Images of The Brain. IEEE Transactions on Neural Networks 3, 672–682 (1992)

    Article  Google Scholar 

  13. Cocosco, C.A., Zijdenbox, A.P., Evans, A.C.: A Fully Automatic and Robust Brain MRI Tissue Classification Method. Medical Image Analysis 7(4), 513–527 (2003)

    Article  Google Scholar 

  14. Ashburner, J., Friston, K.J.: Image Segmentation.: Human Brain Function, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  15. Zhang, Y., Brady, M., Smith, S.: Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  16. Tolba, M.F., Mostafa, M.G., Gharib, T.F., Salem, M.A.: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm. In: ICEIS, vol. 2, pp. 165–170 (2003)

    Google Scholar 

  17. Lustig, M., Tsaig, J., Lee, J.H., Donoho, D.: Fast Spiral Fourier Transform For Iterative MRImage Reconstruction. Stanford University, Stanford (2004)

    Google Scholar 

  18. Rowe, D.B., Logan, B.R.: A complex way to compute fMRI activation. NeuroImage 23, 1078–1092 (2004)

    Article  Google Scholar 

  19. Rowe, D.B.: Modeling both the magnitude and phase of complex-valued fMRI data. NeuroImage 25, 1310–1324 (2005)

    Article  Google Scholar 

  20. Rowe, D.B., Nencka, A.S., Hoffmann, R.G.: Signal and noise of Fourier reconstructed fMRI data. Journal of Neuroscience Methods 159, 361–369 (2007)

    Article  Google Scholar 

  21. Zwicker, E., Fastl, H.: Psychoacoustics: Facts and Models, 2nd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Kailath, T., Sayed, A.H., Hassibi, B.: Linear Estimation. Prentice-Hall, Inc., Englewood Cliffs (2000)

    MATH  Google Scholar 

  23. Gray, R.M., Davisson, L.D.: An Introduction to Statistical Signal Processing. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  24. Paquet, E., Rioux, M., Arsenaul, H.: Range image segmentation using the Fourier transform. Optical Engineering 32(09), 2173–2180 (1993)

    Article  Google Scholar 

  25. Li, C.T., Wilson, R.: Image Segmentation Using Multiresolution Fourier Transform.Technical report, Department of Computer Science, University of Warwick (1995)

    Google Scholar 

  26. Wu, H.S., Barba, J., Gil, J.: An iterative algorithm for cell segmentation usingshort-time Fourier transform. J. Microsc. 184(Pt 2), 127–132 (1996)

    Google Scholar 

  27. Escofet, J., Millan, M.S., Rallo, M.: Applied Optics 40(34), 6170–6176 (2001)

    Google Scholar 

  28. Zou, W., Wang, D.: Texture identification and image segmentation via Fourier transform. In: Zhang, T., Bhanu, B., Shu, N. (eds.) Image Extraction, Segmentation, and Recognition. Proc. SPIE, vol. 4550, pp. 34–39 (2001)

    Google Scholar 

  29. Harte, T.P., Hanka, R.: Number Theoretic Transforms in Neural Network Image Classification (1997)

    Google Scholar 

  30. Kunttu, I., Lepisto, L., Rauhamaa, J., Visa, A.: Multiscale Fourier Descriptor for Shape Classification. In: Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP 2003). IEEE, Los Alamitos (2003)

    Google Scholar 

  31. Rowe, D.B., Logan, B.R.: A complex way to compute fMRI activation. NeuroImage 24, 1078–1092 (2004)

    Article  Google Scholar 

  32. Rowe, D.B.: Modeling both magnitude and phase of complex-valued fMRI data. NeuroImage 25, 1310–1324 (2005)

    Article  Google Scholar 

  33. Rowe, D.B., Nencka, A.S., Hoffman, R.G.: Signal and noise of Fourier reconstructed fMRI data. Journal of Neuroscience Methods 159, 361–369 (2007)

    Article  Google Scholar 

  34. Mezrich, R.: A perspective on K-space. Radiology 195, 297–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramasamy, R., Anandhakumar, P. (2011). Brain Tissue Classification of MR Images Using Fast Fourier Transform Based Expectation- Maximization Gaussian Mixture Model. In: Wyld, D.C., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds) Advances in Computing and Information Technology. ACITY 2011. Communications in Computer and Information Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22555-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22555-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22554-3

  • Online ISBN: 978-3-642-22555-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics