Skip to main content

Biological and Synthetic Membranes: Modeling and Experimental Methodology

  • Chapter
  • First Online:
Shell-like Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 15))

  • 2028 Accesses

Abstract

This work is concerned with the problems of constitutive modeling and experimental testing of perfectly flexible membranes and membranes with bending stiffness. The elastic response of such membranes is the main topic of the work, but the phenomenon of stress softening of elastomeric membranes is also shortly discussed. Special attention is devoted to the methodology of determining response functions and involved material parameters in the respective constitutive models. It is shown that the non-linear response of isotropic perfectly flexible membranes may be deduced from the inflation test provided that the complete meridian profiles of an inflated membrane are measured at different pressure levels. For linear and semi-linear constitutive models, a efficient methodology for the identifying possible types of anisotropy is presented for both the extensional and bending responses of the membrane. This methodology enables to determine the complete set of material constants for each type of anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells. A short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Google Scholar 

  2. Bridgens, B.N., Gosling, P.D., Birchall, M.J.S.: Membrane material behaviour: Concepts, practice and developments. Struct. Eng. 82, 28–33 (1978)

    Google Scholar 

  3. Brown, F.L.H.: Elastic modeling of biomembranes and lipid bilayers. Ann. Rep. Phys. Chem. 59, 685–712 (2008)

    Article  CAS  Google Scholar 

  4. Chapman, B.M.: The high-curvature creasing behaviour of fabrics. J. Textile Institute 64, 250–262 (2007)

    Article  Google Scholar 

  5. Chen, S., Ding, X., Yi, H.: On the anisotropic tensile behaviors of flexible polyvinyl chloride-coated fabrics. Textile Res. J. 77, 369–374 (2007)

    Article  CAS  Google Scholar 

  6. Doyle, B.J., Corbett, T.J., Cloonan, A.J., O’Donnell, M.R., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Experimental modelling of aortic aneurysms: novel applications of silicone rubbers. Med. Eng. Phys. 31, 1002–1012 (2009)

    Article  Google Scholar 

  7. Evans, E.A., Hochmuth, R.: Mechanochemical properties of membranes. Current Topics Mem. Transp. 10, 1–64 (1978)

    Article  CAS  Google Scholar 

  8. Hsu, F.P.K., Schwab, C., Rigamonti, D., Humphrey, J.D.: Identification of response functions from axisymmetric membrane inflation tests: implications for biomechanics. Int. J. Solids Struct. 31, 3375–3386 (1994)

    Article  Google Scholar 

  9. Humphrey, J.D.: Computer methods in membrane biomechanics. Comput. Meth. Biomech. Biomed. Engng. 1, 171–210 (1998)

    Article  Google Scholar 

  10. Indelicato, G., Albano, A.: Symmetry properties of the elastic energy of a woven fabric with bending and twisting resistance. J. Elast. 94, 33–54 (2009)

    Article  Google Scholar 

  11. Kazakevic̆iu̅t e-Makovska, R.: Non-linear response functions for transversely isotropic elastic membranes. Civil Eng. 7(5), 345–351 (2001)

    Google Scholar 

  12. Kazakevic̆iu̅t e-Makovska, R.: Structure of constitutive relations for isotropic elastic membranes with voids. Civil Eng. 7(1), 23–28 (2001)

    Google Scholar 

  13. Kazakevic̆iu̅t e-Makovska, R.: Damage-induced stress-softening effects in elastomeric and biological membranes. J. Civil Eng. Manag. 8, 68–72 (2002)

    Google Scholar 

  14. Kazakevic̆iu̅t e-Makovska ,R.: Modelling of fabric structures in civil engineering. In: Proc. Simulations in Urban Engineering 145–148 (2004)

    Google Scholar 

  15. Kazakevic̆iu̅t e-Makovska, R.: On pseudo-elastic models for stress softening in elastomeric balloons. Comp. Mat. Continua 15, 27–44 (2010)

    Google Scholar 

  16. Kazakevic̆iu̅t e-Makovska, R.: Statics of hybrid structures composed of interacting membranes and strings. Int. J. Non-Linear Mech. 45, 186–192 (2010)

    Article  Google Scholar 

  17. Lardner TJ (1987) Elastic models of cytokinesis. In: Biomechanics of Cell Division. N. Akkas (Ed.) Plenum Press. New York and London 247–279

    Google Scholar 

  18. Mott, P.H., Roland, C.M., Hassan, S.E.: Strains in an inflated rubber sheet. Rubber Chem. Tech. 76, 326–333 (2003)

    Article  CAS  Google Scholar 

  19. Rychlewski, J.: Two-dimensional Hookes tensors isotropic decomposition, effective symmetry criteria. Appl. Mech. 48, 325–345 (1996)

    Google Scholar 

  20. Shah, A.D., Harris, J.L., Kyrlacou, S.K., Humphrey, J.D.: Further roles of geometry and properties in the mechanics of saccular aneurysms. Comp. Meth. Biomech. Biomed. Eng. 11, 109–121 (1997)

    Article  Google Scholar 

  21. Steeb, H., Diebels, S.: Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter. Part I: Isothermal case. Int. J. Solids Struct. 41, 5071–5085 (2004)

    Google Scholar 

  22. Steigmann, D.J.: Fluid films with curvature elasticity. Arch. Rat. Mech. Anal. 150, 127–152 (1999)

    Article  Google Scholar 

  23. Steigmann, D.J.: On the relationship between the Cosserat and Kirchhoff-love theories of elastic shells. Math. Mech. Solids 4, 275–288 (1999)

    Article  Google Scholar 

  24. Treloar, L.R.G.: Strains in an inflated rubber sheet and the mechanism of bursting. Tran. Inst. Rubber Ind. 19, 201–212 (1944)

    CAS  Google Scholar 

  25. Treloar L.R.G.: The physics of rubber elasticity (3rd ed.). Claredon Press, Oxford (2005)

    Google Scholar 

  26. Zheng, Q.S., Betten, J., Spencer, A.J.M.: The formulation of constitutive equations for fibre-reinforced composites in plane problems: Part I. Arch. App. Mech. 62, 530–543 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasa Kazakevic̆iu̅t e Makovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Makovska, R.K., Steeb, H. (2011). Biological and Synthetic Membranes: Modeling and Experimental Methodology. In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. Advanced Structured Materials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21855-2_41

Download citation

Publish with us

Policies and ethics