Skip to main content

Aircraft Engine Fleet Monitoring Using Self-Organizing Maps and Edit Distance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6731))

Abstract

Aircraft engines are designed to be used during several tens of years. Ensuring a proper operation of engines over their lifetime is therefore an important and difficult task. The maintenance can be improved if efficient procedures for the understanding of data flows produced by sensors for monitoring purposes are implemented. This paper details such a procedure aiming at visualizing in a meaningful way successive data measured on aircraft engines and finding for every possible request sequence of data measurement similar behaviour already observed in the past which may help to anticipate failures. The core of the procedure is based on Self-Organizing Maps (SOM) which are used to visualize the evolution of the data measured on the engines. Rough measurements can not be directly used as inputs, because they are influenced by external conditions. A preprocessing procedure is set up to extract meaningful information and remove uninteresting variations due to change of environmental conditions. The proposed procedure contains four main modules to tackle these difficulties: environmental conditions normalization (ECN), change detection and adaptive signal modeling (CD), visualization with Self-Organizing Maps (SOM) and finally minimal Edit Distance search (SEARCH). The architecture of the procedure and of its modules is described in this paper and results on real data are also supplied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Côme, E., Cottrell, M., Verleysen, M., Lacaille, J.: Aircraft engine health monitoring using self-organizing maps. In: Springer (ed.) Proceedings of the Industrial Conference on Data-Mining (2010)

    Google Scholar 

  3. Cottrell, M., Gaubert, P., Eloy, C., François, D., Hallaux, G., Lacaille, J., Verleysen, M.: Fault prediction in aircraft engines using self-organizing maps. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 37–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.J.: Least angle regression. Annals of Statistics 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gustafsson, F.: Adaptive filtering and change detection. John Wiley & Sons, Chichester (2000)

    Google Scholar 

  6. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33, 2001 (1999)

    Google Scholar 

  7. Ross, G., Tasoulis, D., Adams, N.: Online annotation and prediction for regime switching data streams. In: Proceedings of ACM Symposium on Applied Computing, pp. 1501–1505 (March 2009)

    Google Scholar 

  8. Svensson, M., Byttner, S., Rognvaldsson, T.: Self-organizing maps for automatic fault detection in a vehicle cooling system. In: 4th International IEEE Conference on Intelligent Systems, vol. 3, pp. 8–12 (2008)

    Google Scholar 

  9. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Som toolbox for matlab 5. Tech. Rep. A57, Helsinki University of Technology (April 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Côme, E., Cottrell, M., Verleysen, M., Lacaille, J. (2011). Aircraft Engine Fleet Monitoring Using Self-Organizing Maps and Edit Distance. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21566-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21565-0

  • Online ISBN: 978-3-642-21566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics