Skip to main content

Discrete Tomography Reconstruction Based on the Multi-well Potential

  • Conference paper
Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

In this paper we present a new discrete tomography reconstruction algorithm developed for reconstruction of images that consist of a small number of gray levels. The proposed algorithm, called DTMWP is based on the minimization of the objective function which combines the regularized squared projection error with the multi-well potential function. The minimization is done by a gradient based method. We present experimental results obtained by application of the proposed algorithm for reconstruction of images that consist from three gray levels using small number of projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S., Cahn, J.: A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening. Acta Metallurgica 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Balázs, P.: Discrete Tomography Reconstruction of Binary Images with Disjoint Components Using Shape Information. Int. Journal of Shape Modeling 14, 189–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balázs, P., Gara, M.: An Evolutionary Approach for Object-Based Image Reconstruction Using Learnt Priors. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 520–529. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Baldo, S.: Minimal Interface Criterion for Phase Transition in Mixtures of Chan-Hillard Fluids. Annals Inst. Henri Poincaré 7, 67–90 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Batenburg, K.J.: A network flow algorithm for binary image reconstruction from few projections. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 86–97. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Batenburg, K.J., Sijbers, J.: DART: A Fast Heuristic Algebraic Reconstruction Algorithm for Discrete Tomography. In: Proceedings of International Conference on Image Processing, vol. 4, pp. 133–136 (2007)

    Google Scholar 

  7. Birgin, E., Martínez, J.: Spectral Conjugate Gradient Method for Unconstrained Optimization. Appl. Math. Optimization 43, 117–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  9. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Basel (2006)

    Google Scholar 

  10. Kak, A.C., Slaney, M.: Principles of Computerized Tomography Imaging. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  11. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Pham Dinh, T., Elbeirnoussi, S.: Duality in D.C (difference of convex functions) optimization, Subgradient methods. Trends in Math. Opt. 84, 276–294 (1988)

    MathSciNet  Google Scholar 

  13. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A Variational Model for Image Classification and Restoration. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 460–472 (2000)

    Article  MATH  Google Scholar 

  14. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. Programming. Discrete Appl. Math. 151, 229–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schüle, T., Weber, S., Schnörr, C.: Adaptive Reconstruction of Discrete-Valued Objects from few Projections. In: Proceedings of the Workshop on Discrete Tomography and its Applications. Electronic Notes in Discrete Mathematics, vol. 20, pp. 365–384. Elsevier, Amsterdam (2005)

    Google Scholar 

  16. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary Tomography by Iterating Linear Programs from Noisy Projections. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 38–51. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lukić, T. (2011). Discrete Tomography Reconstruction Based on the Multi-well Potential. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics