Skip to main content

The Number of Khalimsky-Continuous Functions between Two Points

  • Conference paper
Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

We determine the number of Khalimsky-continuous functions defined on an interval, having two fixed endpoints, and with values in ℤ, in ℕ, or in a bounded interval. The number of Khalimsky-continuous functions with two points in their codomain gives an example of the Fibonacci sequence. A recurrence formula shall be presented to determine the number of Khalimsky-continuous functions with the values in a bounded interval. Using a generating function leads us to determine the number of increasing Khalimsky-continuous functions. Considering ℕ as a codomain of these functions yields a new example of the classical Fibonacci sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bédaride, N., Domenjoud, E., Jamet, D., Rémy, J.-L.: On the number of balanced words of given length and height over a two-letter alphabet. Discrete Math. Theor. Comput. Sci. 12(3), 41–62 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Berenstein, C.A., Lavine, D.: On the number of digital straight line segments. P.A.M.I. 10(6), 880–887 (1988)

    MATH  Google Scholar 

  3. Freeman, H.: Boundary encoding and processing. In: Lipkin, B.S., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics, pp. 241–266 (1970)

    Google Scholar 

  4. Halimskiĭ, E.D.: On topologies of generalized segments. Soviet Math. Dokl. 10, 1508–1511 (1969)

    Google Scholar 

  5. Huxley, M.N., Zunić, J.: The number of N-point digital discs. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 159–161 (2007)

    Article  MATH  Google Scholar 

  6. Khalimsky, E.D., Kopperman, R.D., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36(1), 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kiselman, C.O.: Convex functions on discrete sets. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 443–457. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kiselman, C.O.: Digital geometry and mathematical morphology. Lecture notes, Uppsala University (2004)

    Google Scholar 

  9. Kiselman, C.O.: Characterizing digital straightness by means of difference operators. In: Luengo, C., Gavrilovic, M. (eds.) Proceedings SSBA 2010, pp. 15–18 (2010)

    Google Scholar 

  10. Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  11. Koplowitz, J., Lindenbaum, M., Bruckstein, A.: The number of digital straight lines on an ℕ×ℕ grid. IEEE Transactions on Information Theory 36(1), 192–197 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maloň, S., Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. EC-10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  13. Melin, E.: Extension of continuous functions in digital spaces with the Khalimsky topology. Topology Appl. 153, 52–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Melin, E.: Digital Geometry and Khalimsky Spaces. Ph.D. Thesis, Uppsala Dissertations in Mathematics 54. Uppsala University (2008)

    Google Scholar 

  15. Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. Thesis, Université Louis Pasteur, Strasbourg (1991)

    Google Scholar 

  16. Ronse, C.: A strong chord property for 4-connected convex digital sets. Computer vision, Graphics and Image Processing 35, 259–269 (1986)

    Article  MATH  Google Scholar 

  17. Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers C-32(12), 1264–1269 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Samieinia, S.: Chord Properties of digital straight line segments. Math. Scand. 106, 169–195 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Samieinia, S.: The number of Khalimsky-continuous functions on intervals. Rocky Mountain J. Math. 40(5), 1667–1687 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Samieinia, S.: The number of continuous curves in digital geometry. Port. Math. 67(1), 75–89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sharaiha, Y.M., Garat, P.: A compact chord property for digital arcs. Pattern recognition 26(5), 799–803 (1993)

    Article  Google Scholar 

  22. Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. Contemporary Math. 119, 169–195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stephenson, P.D.: The structure of the digitised line: with applications to line drawing and ray tracing in computer graphics. Ph.D. Thesis, James Cook University of North Queensland, Department of Computer Science (1998)

    Google Scholar 

  24. Uscka-Wehlou, H.: Digital Lines, Sturmian Words, and Continued Fractions. Ph.D. Thesis, Uppsala Dissertations in Mathematics 65. Uppsala University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samieinia, S. (2011). The Number of Khalimsky-Continuous Functions between Two Points. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics