Skip to main content

Improved Automated Reaction Mapping

  • Conference paper
Experimental Algorithms (SEA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6630))

Included in the following conference series:

Abstract

Automated reaction mapping is an important tool in cheminformatics where it may be used to classify reactions or validate reaction mechanisms. The reaction mapping problem is known to be NP-Complete and may be formulated as an optimization problem. In this paper we present three algorithms that continue to obtain optimal solutions to this problem, but with significantly improved runtimes over the previous CCV algorithm. Our algorithmic improvements include (a) the use of a fast (but not 100% accurate) canonical labeling algorithm, (b) name reuse (i.e., storing intermediate results rather than recomputing), and (c) an incremental approach to canonical name computation. Experimental results on chemical reaction databases demonstrate our 2-CCV NR FDN algorithm usually performs over ten times faster than previous fastest automated reaction mapping algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Muharam, Y., Warnatz, J.: Kinetic Modelling of the Oxidation of Large Aliphatic Hydrocarbons Using an Automatic Mechanism Generation. Phys. Chem. Chem. Phys. 9, 4218–4229 (2007)

    Article  Google Scholar 

  2. Matheu, D., Grenda, J.: A Systematically Generated, Pressure-Dependent Mechanism for High-Conversion Ethane Pyrolysis. 1. Pathways to the Minor Products. J. Phys. Chem. 109, 5332–5342 (2005)

    Article  Google Scholar 

  3. Cartensen, H., Dean, A.M.: Rate Constant Rules for the Automated Generation of Gas-Phase Reaction Mechanisms. J. Phys. Chem. 113, 367–380 (2009)

    Article  Google Scholar 

  4. Nemeth, A., Vidoczy, T., Heberger, K., Kuti, Z., Wagner, J.: MECHGEN: Computer Aided Generation and Reduction of Reaction Mechanisms. J. Chem. Inf. Comput. Sci. 42, 208–214 (2002)

    Article  Google Scholar 

  5. Buda, F., Bounaceur, R., Warth, V., Glaude, P.A., Fournet, R., Battin-Leclerc, F.: Progress Toward a Unified Detailed Kinetic Model for the Autoignition of Alkanes from C4 to C10 Between 600 and 1200 K. Combust. Flame. 142, 170–186 (2005)

    Article  Google Scholar 

  6. Straube, R., Flockerzi, D., Muller, S.C., Hauser, J.B.: Reduction of Chemical Reaction Networks Using Quasi-Integrals. J. Phys. Chem. 109, 441–450 (2005)

    Article  Google Scholar 

  7. Pepiot-Desjardins, P., Pitsch, H.: An Efficient Error-propagation-based Reduction Method for Large Chemical Kinetic Mechanisms. Combust. Flame. 154, 67–81 (2008)

    Article  MATH  Google Scholar 

  8. Liang, L., Stevens, J., Raman, S., Farrell, J.: The Use of Dynamic Adaptive Chemistry in Combustion Simulation of Gasoline Surrogate Fuels. Combust. Flame. 156, 1493–1502 (2009)

    Article  Google Scholar 

  9. Nagy, T., Turanyi, T.: Reduction of Very Large Reaction Mechanisms Using Methods Based on Simulation Error Minimization. Combust. Flame. 156, 417–428 (2009)

    Article  Google Scholar 

  10. Sun, W., Chen, Z., Gou, X., Yiguang, J.: A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms. Combust. Flame. 157, 1298–1307 (2010)

    Article  Google Scholar 

  11. Shi, Y., Ge, H., Brakora, J., Reitz, R.: Automatic Chemistry Mechanism Reduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with Error Control. Energy & Fuels 24, 1646–1654 (2010)

    Article  Google Scholar 

  12. Kovacs, T., Zsely, I., Kramarics, A., Turanyi, T.: Kinetic Analysis of Mechanisms of Complex Pyrolytic Reactions. J. Anal. Appl. Pyrolysis. 79, 252–258 (2007)

    Article  Google Scholar 

  13. Crabtree, J.D., Mehta, D.P.: Automated Reaction Mapping. J. Exp. Algorithmics. 13, 1.15–1.29 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Akutsu, T.: Efficient Extraction of Mapping Rules of Atoms from Enzymatic Reaction Data. J. Comput. Biol. 11, 449–462 (2004)

    Article  Google Scholar 

  15. Crabtree, J., Mehta, D., Kouri, T.: An Open-Source Java Platform for Automated Reaction Mapping. J. Chem. Inf. Model. 50(9), 1751–1756 (2010)

    Article  Google Scholar 

  16. Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  17. Babai, L., Luks, E.: Canonical labeling of graphs. In: STOC 1983: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM, New York (1983)

    Chapter  Google Scholar 

  18. Morgan, H.L.: The Generation of a Unique Machine Description for Chemical Structures - A Technique Developed at Chemical Abstracts Service. J. Chem. Doc. 5(2), 107–113 (1965)

    Article  Google Scholar 

  19. B. McKay. No automorphisms, yes? (2004), http://cs.anu.edu.au/~bdm/nauty/

  20. McKay, B.: Practical Graph Isomorphism. Congr. Numer. 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  21. Faulon, J.-L., Collins, M.J., Carr, R.D.: The Signature Molecular Descriptor. 4. Canonizing Molecules Using Extended Valence Sequences. J. Chem. Inf. Model. 44(2), 427–436 (2004)

    Google Scholar 

  22. Babai, L., Erdos, P., Selkow, S.: Random Graph Isomorphism. Siam J. Comput. 9(3), 628–635 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Czajka, T., Panduranga, G.: Improved Random Graph Isomorphism. Journal of Discrete Algorithms 6, 85–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Felix, L., Valiente, G.: Efficient Validation of Metabolic Pathway Databases. In: Proc. 6th Int. Symp. Computational Biology and Genome Informatics, pp. 1209–1212 (2005)

    Google Scholar 

  25. Arita, M.: Metabolic Reconstruction Using Shortest Paths. Simulation Practice and Theory 8(2), 109–125 (2000)

    Article  Google Scholar 

  26. Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a Chemical Structure Comparison Method for Integrated Analysis of Chemical and Genomic Information in the Metabolic Pathways. J. Am. Chem. Soc. 125(1), 11853–11865 (2003)

    Article  Google Scholar 

  27. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  28. Korner, R., Apostolakis, J.: Automatic Determination of Reaction Mappings and Reaction Center Information. 1. The Imaginary Transition State Energy Approach. Journal of Chemical Information and Modeling 48(6), 1181–1189 (2008)

    Article  Google Scholar 

  29. Apostolakis, J., Sacher, O., Korner, R., Gasteiger, J.: Automatic Determination of Reaction Mappings and Reaction Center Information. 2. Validation on a Biochemical Reaction Database. Journal of Chemical Information and Modeling 48(6), 1190–1198 (2008)

    Article  Google Scholar 

  30. Gas Research Institute. Gri-mech 3.0, http://www.me.berkeley.edu/gri-mech/

  31. Naik, C.V., Dean, A.M.: Detailed Kinetic Modeling of Ethane Oxidation. Combust. Flame. 145, 16–37 (2006)

    Article  Google Scholar 

  32. Randolf, K.L., Dean, A.M.: Hydrocarbon Fuel Effects in Solid-oxide Fuel Cell Operation: An Experimental and Modeling Study of n-hexane Pyrolysis. Phys. Chem. Chem. Phys. 9, 4245–4258 (2007)

    Article  Google Scholar 

  33. Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of n-heptane oxidation. Combust. Flame. 114(1-2), 149–177 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kouri, T., Mehta, D. (2011). Improved Automated Reaction Mapping. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20662-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20661-0

  • Online ISBN: 978-3-642-20662-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics