Skip to main content

Modelling gene expression using stochastic simulation

  • Conference paper
Book cover Multiscale Modelling and Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 39))

  • 779 Accesses

Abstract

Deterministic simulation of biological processes represents only a loose description of the actual intracellular mechanisms due to the small number of many molecular species involved in the regulatory circuits. Mesoscopic modelling that considers the systemic key species as integer numbers on a statistical basis was used in the present case study to solve a two gene sample problem in a eucaryotic cell. The results obtained with Gillespie’s stochastic simulation algorithm were compared to the deterministic integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J.E., Ollis, D.F.: Biochemical Engineering Fundamentals. McGraw-Hill (1986)

    Google Scholar 

  2. Kampen, van N.G.: Stochastic Processes in Physics and Chemistry. North-Holland Publishing Co., Amsterdam (1983)

    Google Scholar 

  3. Erdi, P., Toth, J., Mathematical Models of chemical reactions. Princeton University Press, Princeton (1988)

    Google Scholar 

  4. Elf, J., Lötstedt, P., Sjöberg, P.: Problems of high dimensions in molecular biology. In: Proceedings of the 17th GAMM-Seminar Leipzig 20011–10 (2001)

    Google Scholar 

  5. Gillespie, D.T., Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem.81, 2340ff (1977)

    Google Scholar 

  6. McQuarrie, D.A., Stochastic Approach to Chemical Kinetics. J. Appl. Prob.4413–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bailey, J.E., Towards a science of metabolic engineering. Science2521668–1674 (1991)

    Article  Google Scholar 

  8. Rathinam, M., Cao, Y., Petzold, L., Gillespie, D., Stiffness in Stochastic Chemically Reacting Systems: The Implicit Tau-Leaping MethodJ. Chem. Phys., submitted

    Google Scholar 

  9. Hucka et. al, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinf.19(4)524–31 (2003)

    Article  Google Scholar 

  10. Varner J., Ramkrishna D., Mathematical models of metabolic pathways. Curr. Opin. Biotechnol.10(2)146–50 (1999)

    Article  Google Scholar 

  11. Bailey J.E., Host-vector interactions in Escherichia coli. Adv. B iochem. Eng. Biotechnol.4829–52 (1993)

    Google Scholar 

  12. Ferrell, J.E.,Building a cellular switch: more lessons from a good egg. Bioessays. 21(10)866–70 (1999)

    Google Scholar 

  13. Cooper T.G., Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev.26(3)223–38 (2002)

    Article  Google Scholar 

  14. Isralewitz B., Gao M., Schulten K., Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol.11(2)224–30 (2001)

    Article  Google Scholar 

  15. Kepler T.B., Elston T.C., Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J.81(6)3116–36 (2001)

    Article  Google Scholar 

  16. Gonze D., Halloy J., Goldbeter A., Stochastic versus deterministic models for circadian rhythms. J. Biol. Phys.28637–53 (2002)

    Article  Google Scholar 

  17. Selinger D.W., Wright M.A., Church G.M., On the complete determination of biological systems. Trends Biotechnol.21(6)251–4 (2003)

    Article  Google Scholar 

  18. Stark J, Callard R, Hubank M., From the top down: towards a predictive biology of signalling networks. Trends Biotechnol.21(7)290–3 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuepfer, L., Sauer, U. (2004). Modelling gene expression using stochastic simulation. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics