Skip to main content

A Simple Class of Kripke-Style Models in Which Logic and Computation Have Equal Standing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6355))

Abstract

We present a sound and complete model of lambda-calculus reductions based on structures inspired by modal logic (closely related to Kripke structures). Accordingly we can construct a logic which is sound and complete for the same models, and we identify lambda-terms with certain simple sentences (predicates) in this logic, by direct compositional translation. Reduction then becomes identified with logical entailment.

Thus, the models suggest a new way to identify logic and computation. Both have elementary and concrete representations in our models; where these representations overlap, they coincide.

In a concluding speculation, we note a certain subclass of the models which seems to play a role analogous to that played by the cumulative hierarchy models in axiomatic set theory and the natural numbers in formal arithmetic — there are many models of the respective theories, but only some, characterised by a fully second order interpretation, are the ‘intended’ ones.

The authors are grateful to the anonymous referees for their comments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extensionality. Journal of Symbolic Logic 69, 1027–1088 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dekkers, W., Bunder, M., Barendregt, H.: Completeness of the propositions-as-types interpretation of intuitionistic logic into illative combinatory logic. Journal of Symbolic Logic 3, 869–890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dekkers, W., Bunder, M., Barendregt, H.: Completeness of two systems of illative combinatory logic for first-order propositional and predicate calculus. Archive für Mathematische Logik 37, 327–341 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Michael Dunn, J., Restall, G.: Relevance logic. In: Gabbay, D.M. (ed.) Handbook of Philosophical Logic, 2nd edn., vol. 6, pp. 1–136. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  6. Gabbay, M., Gabbay, M.J.: Term sequent logic. In: Proceedings of the 17th International Workshop on Functional and (Constraint) Logic Programming (WFLP 2008). Electronic Notes in Theoretical Computer Science, vol. 246, pp. 87–106 (August 2009)

    Google Scholar 

  7. Werner, B., Dowek, G.: Arithmetic as a theory modulo. In: Proceedings of RTA, pp. 423–437 (2005)

    Google Scholar 

  8. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Girard, J.-Y.: Linear logic: its syntax and semantics. In: Proceedings of the Workshop on Advances in Linear Logic, pp. 1–42. Cambridge University Press, New York (1995)

    Chapter  Google Scholar 

  10. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and types. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. Goldblatt, R.: Logics of Time and Computation, 2nd edn., Center for the Study of Language and Information. CSLI Lecture Notes, vol. 7 (1992)

    Google Scholar 

  12. Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, New York (1996)

    Book  MATH  Google Scholar 

  14. Jay, C.B., Ghani, N.: The virtues of eta-expansion. Journal of Functional Programming 5(2), 135–154 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleene, S.C., Rosser, J.B.: The inconsistency of certain formal logics. Annals of Mathematics 36(3) (1935)

    Google Scholar 

  16. Meyer, R.K., Bunder, M.W., Powers, L.: Implementing the ‘fool’s model’ of combinatory logic. Journal of Automated Reasoning 7(4), 597–630 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. O’Hearn, P., Pym, D.: The logic of bunched implications. Bulletin of Symbolic Logic 5(2), 215–244 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Plotkin, G.D.: The lambda-calculus is omega-incomplete. Journal of Symbolic Logic 39(2), 313–317 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Selinger, P.: Order-incompleteness and finite lambda reduction models. Theoretical Computer Science 309(1), 43–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shapiro, S.: Foundations without foundationalism: a case for second-order logic. Oxford logic guides, vol. 17. Oxford University Press, Oxford (2000)

    Book  MATH  Google Scholar 

  21. van Benthem, J.: Higher-order logic. In: Handbook of Philosophical Logic, 2nd edn., vol. 1, pp. 189–244. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  22. Visser, A.: An overview of interpretability logic. In: Proceedings of the 1988 Heyting Conference on Mathematical Logic, pp. 307–359. Plenum Press, New York (1997)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabbay, M., Gabbay, M.J. (2010). A Simple Class of Kripke-Style Models in Which Logic and Computation Have Equal Standing. In: Clarke, E.M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science(), vol 6355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17511-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17511-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17510-7

  • Online ISBN: 978-3-642-17511-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics