Skip to main content

On the (Non-)existence of Polynomial Kernels for P l -free Edge Modification Problems

  • Conference paper
Parameterized and Exact Computation (IPEC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6478))

Included in the following conference series:

Abstract

Given a graph G = (V,E) and an integer k, an edge modification problem for a graph property \({\it \Pi}\) consists in deciding whether there exists a set of edges F of size at most k such that the graph \(H=(V,E\vartriangle F)\) satisfies the property \({\it \Pi}\). In the \({\it \Pi}\) edge-completion problem, the set F of edges is constrained to be disjoint from E; in the \({\it \Pi}\) edge-deletion problem, F is a subset of E; no constraint is imposed on F in the \({\it \Pi}\) edge-editing problem. A number of optimization problems can be expressed in terms of graph modification problems which have been extensively studied in the context of parameterized complexity. When parameterized by the size k of the edge set F, it has been proved that if \({\it \Pi}\) is an hereditary property characterized by a finite set of forbidden induced subgraphs, then the three \({\it \Pi}\) edge-modification problems are FPT [4]. It was then natural to ask [4] whether these problems also admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and Wahlström answered this question negatively [15]. However, the problem remains open on many natural graph classes characterized by forbidden induced subgraphs. Kratsch and Wahlström asked whether the result holds when the forbidden subgraphs are paths and pointed out that the problem is already open in the case of P 4-free graphs (i.e. cographs). This paper provides positive and negative results in that line of research. We prove that parameterized cograph edge modification problems have cubic vertex kernels whereas polynomial kernels are unlikely to exist for P l -free and C l -free edge deletion problems for large enough l.

Research supported by the AGAPE project (ANR-09-BLAN-0159).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without polynomial kernels. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  6. El-Mallah, E.S., Colbourn, C.: The complexity of some edge deletion problems. IEEE Transactions on Circuits and Systems 35(3), 354–362 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fellows, M.R., Langston, M., Rosamond, F., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized complexity theorey. Texts in Theoretical Computer Science. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC, pp. 133–142 (2008)

    Google Scholar 

  10. Garey, M., Johnson, S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York (1978)

    MATH  Google Scholar 

  11. Golumbic, M., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19, 449–473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Habib, M., Paul, C.: A survey on algorithmic aspects of modular decomposition. Computer Science Review 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  13. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few edges. In: STOC, pp. 374–381 (2007)

    Google Scholar 

  14. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Annual ACM Symposium on Theory of Computing (STOC), pp. 95–103 (2007)

    Google Scholar 

  15. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. In: IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Heidelberg (2009)

    Google Scholar 

  16. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford Lectures Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  18. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73(3-4), 125–129 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive systems of linear equations. In: Graph Theory and Computing, pp. 183–217 (1972)

    Google Scholar 

  20. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Computing 13, 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggragation and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guillemot, S., Paul, C., Perez, A. (2010). On the (Non-)existence of Polynomial Kernels for P l -free Edge Modification Problems. In: Raman, V., Saurabh, S. (eds) Parameterized and Exact Computation. IPEC 2010. Lecture Notes in Computer Science, vol 6478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17493-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17493-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17492-6

  • Online ISBN: 978-3-642-17493-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics