Skip to main content

Algebraic Curves and Riemann Surfaces in Matlab

  • Chapter
  • First Online:
Computational Approach to Riemann Surfaces

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2013))

Abstract

In the previous chapter, a detailed description of the algorithms for the ‘algcurves’ package in Maple was presented. As discussed there, the package is able to handle general algebraic curves with coefficients given as exact arithmetic expressions, a restriction due to the use of exact integer arithmetic. Coefficients in terms of floating point numbers, i.e., the representation of decimal numbers of finite length on a computer, can in principle be handled, but the floating point numbers have to be converted to rational numbers. This can lead to technical difficulties in practice. One also faces limitations if one wants to study families of Riemann surfaces, where the coefficients in the algebraic equation defining the curve are floating point numbers depending on a set of parameters, i.e., if one wants to explore modular properties of Riemann surfaces as in the examples discussed below. An additional problem in this context can be computing time since the computation of the Riemann matrix uses the somewhat slow Maple integration routing. Thus, a more efficient computation of the Riemann matrix is interesting if one wants to study families of Riemann surfaces or higher genus examples which are computationally expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belokolos, E.D., Bobenko, A.I., Enolskii, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric approach to nonlinear integrable equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  2. Brieskorn, E., Knörrer, H.: Plane algebraic curves. Birkhauser Verlag, Basel (1986)

    MATH  Google Scholar 

  3. Bobenko, A.I.: Introduction to compact Riemann surfaces. In: Bobenko, A.I., Klein, Ch. (eds.) Lecture Notes in Mathematics 2013, pp. 3–64. Springer, Berlin (2011)

    Google Scholar 

  4. Deconinck, B., Heil, M., Bobenko, A.I., van Hoeij, M., Schmies, M.: Computing Riemann theta functions. Math. Comput. 73, 1417–1442 (2004)

    MATH  Google Scholar 

  5. Deift, P., Venakides S., Zhou, X.: New result in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. IMRN 6, 285–299 (1997)

    Google Scholar 

  6. Duval, D.: Rational Puiseux Expansions. Compos. Math. 70(2), 119–154 (1989)

    MATH  MathSciNet  Google Scholar 

  7. Frauendiener, J., Klein, C.: On the exact treatment of stationary counter-rotating dust disks: Physical Properties. Phys. Rev. D 63, 84025 (2001)

    Article  MathSciNet  Google Scholar 

  8. Frauendiener, J., Klein, C.: Hyperelliptic theta-functions and spectral methods. J. Comp. Appl. Math. 167, 193 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frauendiener, J., Klein, C.: Hyperelliptic theta-functions and spectral methods: KdV and KP solutions. Lett. Math. Phys. 76, 249–267 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frauendiener, J., Klein, C.: Computing with Algebraic Curves in Matlab, in preparation

    Google Scholar 

  11. Frauendiener, J., Klein, C.: Hyperelliptic Riemann surfaces in Matlab, in preparation

    Google Scholar 

  12. Grava, T., Klein, C.: Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations. Comm. Pure Appl. Math. 60, 1623–1664 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grava, T., Tian, F.-R.: The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Comm. Pure Appl. Math. 55(12), 1569–1639 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  15. Kamvissis, S., McLaughlin, K.D.T.-R. Miller, P.D.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Annals of Mathematics Studies, vol. 154. Princeton University Press, Princeton, NJ (2003)

    Google Scholar 

  16. Kirwan, F.: Complex Algebraic Curves. London Mathematical Society Student Texts, vol. 23. CUP, Cambridge (1992)

    Google Scholar 

  17. Klein, C.: On explicit solutions to the stationary axisymmetric Einstein-Maxwell equations describing dust disks. Ann. Phys. (Leipzig) 12, 599 (2003)

    Google Scholar 

  18. Klein, C., Kokotov, A., Korotkin, D.: Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces. Math. Zeitschr. 261(1), 73–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Klein, C., Richter, O.: Ernst Equation and Riemann Surfaces. Lecture Notes in Physics, vol. 685. Springer, Berlin (2005)

    Google Scholar 

  20. Klein, C., Sparber C., Markowich, P.: Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation. J. Nonl. Sci. 17(5), 429–470 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Korotkin, D.A.: Finite-gap solutions of the stationary axially symmetric Einstein equation in vacuum. Theor. Math. Phys. 77, 1018 (1989)

    Article  MathSciNet  Google Scholar 

  22. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg de Vries equation, I,II,III. Comm. Pure Appl. Math. 36, 253–290, 571–593, 809–830 (1983)

    Google Scholar 

  23. Noether, M.: Rationale Ausführungen der Operationen in der Theorie der algebraischen Funktionen. Math. Ann. 23, 311–358, (1883)

    Article  MathSciNet  Google Scholar 

  24. Poteaux, A.: Computing Monodromy Groups defined by Plane Algebraic Curves. In: Proceedings of the 2007 International Workshop on Symbolic-numeric Computation. ACM, New-York, 36–45 (2007)

    Google Scholar 

  25. Quine, J.R., Sarnak, P. (eds.): Extremal Riemann surfaces. Contemporary Mathematics, vol. 201. AMS, Providence, RI (1997)

    Google Scholar 

  26. Tovbis, A., Venakides, S., Zhou, X.: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Comm. Pure Appl. Math. 57 877–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  28. Tretkoff, C.L., Tretkoff, M.D.: Combinatorial group theory, Riemann surfaces and differential equations. Contemp. Math. 33, 467–517 (1984)

    MathSciNet  Google Scholar 

  29. Venakides, V.: The zero dispersion limit of the Korteweg de Vries equation for initial potential with nontrivial reflection coefficient. Comm. Pure Appl. Math. 38, 125–155 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Whitham, G.B.: Nonlinear dispersive waves. SIAM J. App. Math. 14, 956–958 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  31. Whitham, G.B.: Linear and nonlinear waves. Wiley, New York (1974)

    MATH  Google Scholar 

  32. www.comlab.ox.ac.uk/oucl/work/nick.trefethen

    Google Scholar 

  33. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  34. Zeng, Z.: Computing multiple roots of inexact polynomials. Math. Comp. 74, 869–903 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Frauendiener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frauendiener, J., Klein, C. (2011). Algebraic Curves and Riemann Surfaces in Matlab. In: Bobenko, A., Klein, C. (eds) Computational Approach to Riemann Surfaces. Lecture Notes in Mathematics(), vol 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17413-1_3

Download citation

Publish with us

Policies and ethics