Skip to main content

Beatmung, Atemregulation und Weaning, ARDS

  • Chapter
NeuroIntensiv
  • 3824 Accesses

Zusammenfassung

Die maschinelle Beatmung ist ein wesentlicher Teil der intensivmedizinischen Therapie, da insbesondere bei Patienten mit zerebralen Schädigungen fast regelhaft auch eine Störung der Atemfunktion vorliegt. Die Entwicklung moderner Intensivventilatoren wurde durch die Polioepidemien in Europa in den 1950er Jahren getriggert. Inzwischen stehen hochkomplexe, computergesteuerte Geräte zur Verfügung, die zur Ausnutzung ihrer Potenziale vom Anwender grundlegende Kenntnisse der Atemphysiologie und spezifi sche Kenntnisse der Atemregulation erfordern. Die Vielfalt verfügbarer Beatmungsmodi macht es möglich, für jeden Patienten die Beatmungstherapie individuell anzupassen. Das ist insofern wichtig, als die maschinelle Beatmung zwar eine akut lebensrettende Maßnahme darstellt, bei unsachgemäßer Durchführung aber eine Schädigung der Lunge verursachen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Afshari A, Brok J, Moller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults. Cochrane Database Syst Rev 2010;CD002787

    Google Scholar 

  2. Antonelli M, Pennisi MA, Pelosi P, et al. Noninvasive positive pressure ventilation using a helmet in patients with acute exacerbation of chronic obstructive pulmonary disease: a feasibility study. Anesthesiology 2004;100:16–24

    Article  PubMed  Google Scholar 

  3. Bein T, Weber F, Philipp A, et al. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 2006;34:1372–1377

    Article  PubMed  Google Scholar 

  4. Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 1994;20:225–232

    Article  PubMed  CAS  Google Scholar 

  5. Blackwood B, Alderdice F, Burns KE, et al. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev 2010;CD006904

    Google Scholar 

  6. Bosma K, Ferreyra G, Ambrogio C, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: Pressure support versus proportional assist ventilation. Critical Care Medicine 2007;35:1048–1054

    Article  PubMed  Google Scholar 

  7. Bosma KJ, Taneja R, Lewis JF. Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: current and experimental approaches. Drugs 2010;70:1255–1282

    Article  PubMed  CAS  Google Scholar 

  8. Brander L, Leong-Poi H, Beck J, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest 2009;135:695–703

    Article  PubMed  Google Scholar 

  9. Briel M, Meade M, Mercat A, et al. Higher vs lower positive endexpiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and metaanalysis. JAMA 2010;303:865–873

    Article  PubMed  CAS  Google Scholar 

  10. Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994;150:896–903

    PubMed  CAS  Google Scholar 

  11. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008;358:125–139

    Article  PubMed  CAS  Google Scholar 

  12. Burns KE, Adhikari NK, Keenan SP, Meade M. Use of non-invasive ventilation to wean critically ill adults offinvasive ventilation: meta-analysis and systematic review. BMJ 2009;338:b1574

    Article  PubMed  Google Scholar 

  13. Davies A, Jones D, Bailey M, et al. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 2009;302:1888–1895

    Article  PubMed  CAS  Google Scholar 

  14. Dembinski R, Max M, Bensberg R, et al. Pressure Support Compared with Controlled Mechanical Ventilation in Experimental Lung Injury. Anesth Analg 2002;94:1570–1576

    PubMed  Google Scholar 

  15. Determann RM, Royakkers A, Wolthuis EK, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 2010;14:R1

    Article  PubMed  Google Scholar 

  16. Deutsche Gesellschaft fuer Pneumologie und Beatmungsmedizin. S3 Leitlinie Nichtinvasive Beatmung als Therapie der akuten Respiratorischen Insuffizienz. www.leitlinien.net . 2010

  17. Diaz JV, Brower R, Calfee CS, Matthay MA. Therapeutic strategies for severe acute lung injury. Crit Care Med 2010;38:1644–1650

    Article  PubMed  Google Scholar 

  18. Eichacker PQ, Gerstenberger EP, Banks SM, et al. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002;166:1510–14

    Article  PubMed  Google Scholar 

  19. Esteban A, Alia I, Tobin MJ, et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 1999;159:512–518

    PubMed  CAS  Google Scholar 

  20. Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002;287:345–355

    Article  PubMed  Google Scholar 

  21. Esteban A, Frutos-Vivar F, Ferguson ND, et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med 2004;350:2452–2460

    Article  PubMed  CAS  Google Scholar 

  22. Fabry B, Guttmann J, WolffG. Automatic compensation of endotracheal tube resitance in spontaneously breathing patients. Technol Health Care 1994;1:281–291

    Google Scholar 

  23. Finfer S, Norton R, Bellomo R, et al. The SAFE study: saline vs. albumin for fluid resuscitation in the critically ill. Vox Sang 2004;87 Suppl 2:123–131

    Article  PubMed  Google Scholar 

  24. Gama de AM, Spieth PM, Pelosi P, et al. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 2008;36:818–27

    Article  Google Scholar 

  25. Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001;164:1701–1711

    PubMed  CAS  Google Scholar 

  26. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 2008;371:126–134

    Article  PubMed  Google Scholar 

  27. Gonzalez M, Arroliga AC, Frutos-Vivar F, et al. Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med 2010;36:817–827

    Article  PubMed  Google Scholar 

  28. Graham MR, Haberman CJ, Brewster JF, et al. Mathematical modelling to centre low tidal volumes following acute lung injury: a study with biologically variable ventilation. Respir Res 2005;6:64

    Article  PubMed  Google Scholar 

  29. Hedenstierna G, Tokics L, Lundquist H, et al. Phrenic nerve stimulation during halothane anesthesia. Effects of atelectasis. Anesthesiology 1994;80:751–760

    Article  PubMed  CAS  Google Scholar 

  30. Hering R, Peters D, Zinserling J, et al. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med 2002;28:1426–1433

    Article  PubMed  Google Scholar 

  31. Hormann C, Baum M, Putensen C, et al. Effects of spontaneous breathing with BIPAP on pulmonary gas exchange in patients with ARDS. Acta Anaesthesiol Scand Suppl 1997;111:152–155

    PubMed  CAS  Google Scholar 

  32. Keenan SP, Sinuff T, Burns KE, et al. Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. CMAJ 2011 online first

    Google Scholar 

  33. Kleinman BS, Frey K, VanDrunen M, et al. Motion of the diaphragm in patients with chronic obstructive pulmonary disease while spontaneously breathing versus during positive pressure breathing after anesthesia and neuromuscular blockade. Anesthesiology 2002;97:298–305

    Article  PubMed  Google Scholar 

  34. Kopp R, Henzler D, Dembinski R, Kuhlen R. [Extracorporeal membrane oxygenation by acute respiratory distress syndrome]. Anaesthesist 2004;53:168–174

    Article  PubMed  CAS  Google Scholar 

  35. Meade M, Guyatt G, Cook D, et al. Predicting success in weaning from mechanical ventilation. Chest 2001;120:400S-424S

    Article  PubMed  CAS  Google Scholar 

  36. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008;299:637–645

    Article  PubMed  CAS  Google Scholar 

  37. Metnitz PG, Krenn CG, Steltzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 2002;30:2051–2058

    Article  PubMed  Google Scholar 

  38. Namen AM, Ely EW, Tatter SB, Case LD, Lucia MA, Smith A, Landry S, Wilson JA, Glazier SS, Branch CL, Kelly DL, Bowton DL, Haponik EF. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med 2001;163(3 Pt 1):658–664

    PubMed  CAS  Google Scholar 

  39. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363:1107–1116

    Article  PubMed  CAS  Google Scholar 

  40. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009;374:1351–1363

    Article  PubMed  Google Scholar 

  41. Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164:43–49

    PubMed  CAS  Google Scholar 

  42. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999;282:54–61

    Article  PubMed  CAS  Google Scholar 

  43. Rossaint R, Werner C, Zwissler B (2008) Die Anästhesiologie, 2. Aufl. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  44. S2e-Leitlinie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Lagerungstherapie zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen. Anästhesie Intensivmed 2008;49:S1-S24

    Google Scholar 

  45. Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998;157:1721–1725

    PubMed  CAS  Google Scholar 

  46. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010;36:585–599

    Article  PubMed  Google Scholar 

  47. Terragni PP, Del SL, Mascia L, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 2009;111:826–835

    Article  PubMed  Google Scholar 

  48. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301–1308

    Article  Google Scholar 

  49. West JB. Respiratory Physiology - The Essentials. 6. 2000. Baltimore, Lippincott Williams & Wilkins

    Google Scholar 

  50. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006;354:2564–2575

    Article  PubMed  CAS  Google Scholar 

  51. Xirouchaki N, Kondili E, Vaporidi K, et al. Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 2008;34:2026–2034

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henzler, D., Rossaint, R. (2012). Beatmung, Atemregulation und Weaning, ARDS. In: Schwab, S., Schellinger, P., Werner, C., Unterberg, A., Hacke, W. (eds) NeuroIntensiv. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16911-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16911-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16910-6

  • Online ISBN: 978-3-642-16911-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics