Skip to main content

Congruent Number Theta Coefficients to 1012

  • Conference paper
Algorithmic Number Theory (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6197))

Included in the following conference series:

Abstract

We report on a computation of congruent numbers, which subject to the Birch and Swinnerton-Dyer conjecture is an accurate list up to 1012. The computation involves multiplying long theta series as per Tunnell (1983). The method, which we describe in some detail, uses a multimodular disk based technique for multiplying polynomials out-of-core which minimises expensive disk access by keeping data truncated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alter, R., Curtz, T.B., Kubota, K.K.: Remarks and results on congruent numbers. In: Proc. Third Southeastern Conf. on Combinatorics, Graph Theory and Computing, pp. 27–35 (1972)

    Google Scholar 

  2. Argüello, F., Amor, M., Zapata, E.L.: Implementation of parallel FFT algorithms on distributed memory machines with a minimum overhead of communication. Parallel Comput. 22(9), 1255–1279 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bailey, D.H.: FFTs in external or hierarchical memory. J. Supercomput. 4, 23–35 (1990)

    Article  Google Scholar 

  4. Bailey, D.H.: The computation of π to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm. Math. Comp. 50(181), 283–296 (1988)

    MATH  MathSciNet  Google Scholar 

  5. Bastien, L.: Nombres congruents. Intermédiaire Math. 22, 231–232 (1915)

    Google Scholar 

  6. Bellard, F.: Computation of 2700 billion decimal digits of Pi using a Desktop Computer (2010), http://bellard.org/pi/pi2700e9/pipcrecord.pdf

  7. Birch, B.J., Stephens, N.M.: The parity of the rank of the Mordell-Weil group. Topology 5, 295–299 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calvin, C.: Implementation of parallel FFT algorithms on distributed memory machines with a minimum overhead of communication. Parallel Comput. 22(9), 1255–1279 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    MATH  MathSciNet  Google Scholar 

  10. Cormen, T.H.: Determining an out-of-core FFT decomposition strategy for parallel disks by dynamic programming. In: Algorithms for Parallel Processing IMA, Math. Appl., vol. 105, pp. 307–320. Springer, Heidelberg (1999)

    Google Scholar 

  11. Dickson, L.E.: History of the Theory of Numbers II. Carnegie Intitute of Washington (1920); Reprinted Chelsea (1966)

    Google Scholar 

  12. Elkies, N.D.: Online tables, http://www.math.harvard.edu/~elkies/compnt.html

  13. Feng, K.: Non-congruent Numbers, Odd graphs and the B-S-D Conjecture. Acta Arith. LXXV(1), 71–83 (1996)

    Google Scholar 

  14. Feng, K., Xue, Y.: New series of odd non-congruent numbers. Science in China Series A: Mathematics 49(11), 1642–1654 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. GMP: The GNU Multi-Precision Library, http://gmplib.org/

  16. Gourdon, X.: PiFast prime digit program (2004), http://numbers.computation.free.fr/Constants/PiProgram/pifast.html

  17. Guy, R.K.: Unsolved Problems in Number Theory. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  18. Hart, W.B.: Fast Library for Number Theory (FLINT), www.flintlib.org

  19. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier transform. IEEE ASSP Magazine 1(4), 14–21 (1984)

    Article  Google Scholar 

  20. Gentleman, W.M., Sande, G.: Fast Fourier Transforms - For Fun and Profit. In: AFIPS Proceedings, vol. 29, pp. 563–578 (1966)

    Google Scholar 

  21. Harvey, D.: A cache-friendly truncated FFT. Theor. Comput. Sci. 410, 2649–2658 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harvey, D.: zn_poly, http://www.cims.nyu.edu/~harvey/zn_poly/index.html

  23. Lagrange, J.: Thèse d’Etat de l’Université de Reims (1976)

    Google Scholar 

  24. Johnsson, S.L., Jacquemin, M., Krawitz, R.L.: Communication efficient multi-processor FFT. J. Comput. Phys. 102(2), 381–397 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, 2nd edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  26. Kramarz, G.: All congruent numbers less than 2000. Math. Annalen 273, 337–340 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lemmermeyer, F.: Some families of non-congruent numbers. Acta. Arith. 110, 15–36 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Monsky, P.: Mock Heegner Points and Congruent Numbers. Math. Z. 204, 45–68 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. MPIR: Multiple Precision Integers and Rationals, http://www.mpir.org/

  30. Ono, K.: The web of modularity: Arithmetic of the coefficients of modular forms and q-series. In: CBMS Conference Series, vol. 102. Amer. Math. Soc., Providence (2004)

    Google Scholar 

  31. Na’mneh, R.A., Pan, D.W.: Five-step FFT algorithm with reduced computational complexity. Inform. Process. Lett. 101(6), 262–267 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rogers, N.F.: Rank computations for the congruent number elliptic curves. Eperiment. Math. 9(4), 591–594 (2000)

    MATH  Google Scholar 

  33. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7(3-4), 281–292 (1971)

    Article  MATH  Google Scholar 

  34. Shoup, V.: NTL: Number Theory Library, http://www.shoup.net/ntl/

  35. Stephens, N.M.: Congruence properties of congruent numbers. Bull. London Math. Soc. 7, 182–184 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  36. Swarztrauber, P.: Multiprocessor FFTs. Proceedings of the international conference on vector and parallel computing—issues in applied research and development (Loen, 1986). Parallel Comput. 5(1-2), 197–210 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  37. Takahashi, D.: Calculation of π to 51.5 billion decimal digits on distributed memory parallel processors. Trans. Inform. Process. Soc. Japan 39(7), 2074–2083 (1998)

    MathSciNet  Google Scholar 

  38. Temperton, C.: Implementation of a prime factor FFT algorithm on CRAY-1. Parallel Comput. 6(1), 99–108 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tunnell, J.B.: A classical diophantine problem and modular forms of weight 3/2. Invent. Math. 72, 323–334 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  40. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory. I. Two-level memories. Algorithmica 12(2-3), 110–147 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  42. Yoshida, S.-i.: Some variants of the congruent number problem, I, II. Kyushu J. Math. 55(2), 387–404 (2001), 56(1), 147–165 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hart, W.B., Tornaría, G., Watkins, M. (2010). Congruent Number Theta Coefficients to 1012 . In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14518-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14517-9

  • Online ISBN: 978-3-642-14518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics