Skip to main content

On the Complexity of the Montes Ideal Factorization Algorithm

  • Conference paper
Algorithmic Number Theory (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6197))

Included in the following conference series:

Abstract

Let p be a rational prime and let Φ(X) be a monic irreducible polynomial in Z[X], with nΦ = degΦ and δΦ = v p (discΦ). In [13] Montes describes an algorithm for the decomposition of the ideal \(p\mathcal{O}K\) in the algebraic number field K generated by a root of Φ. A simplified version of the Montes algorithm, merely testing Φ(X) for irreducibility over Q p , is given in [19], together with a full Maple implementation and a demonstration that in the worst case, when Φ(X) is irreducible over Q p , the expected number of bit operations for termination is O(nΦ3 + ε δΦ2 + ε). We now give a refined analysis that yields an improved estimate of O(nΦ3 + ε δΦ + nΦ2 + ε δΦ2 + ε) bit operations. Since the worst case of the simplified algorithm coincides with the worst case of the original algorithm, this estimate applies as well to the complete Montes algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlekamp, E.R.: Factoring Polynomials over Finite Fields. Bell Systems Technical Journal 46, 1853–1859 (1967)

    MathSciNet  Google Scholar 

  2. Berlekamp, E.R.: Factoring Polynomials over Large Finite Fields. Math. Comp. 24, 713–735 (1970)

    MathSciNet  Google Scholar 

  3. Cantor, D.G., Kaltofen, E.: On Fast Multiplication of Polynomials over Arbitrary Algebras. Acta Informatica 28(7), 693–701 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cantor, D.G., Zassenhaus, H.: A New Algorithm for Factoring Polynomials Over Finite Fields. Math. Comp. 36, 587–592 (1981)

    MATH  MathSciNet  Google Scholar 

  5. Dedekind, R.: Supplement X to Vorlesungen über Zahlentheorie von P.G. Lejeune Dirichlet (2nd ed.). Vieweg, Braunschweig (1871); Also Werke 3, 223–261 (1932) (in part)

    Google Scholar 

  6. Dedekind, R.: Sur la théorie des nombres entiers algébriques. Gauthier-Villars (1877); Also Bull. des Sci. Math. Astron. 11(1), 278–288 (1876); 1(2), 17–41, 69–92, 144–164, 207–248 (1877) and Werke 3, 263–296 (1932) (in part)

    Google Scholar 

  7. Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 23, 1–23 (1878)

    Google Scholar 

  8. Ford, D., Pauli, S., Roblot, X.-F.: A Fast Algorithm for Polynomial Factorization over Q p . Journal de Théorie des Nombres de Bordeaux 14, 151–169 (2002)

    MATH  MathSciNet  Google Scholar 

  9. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  10. Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory (2008), arXiv:0807.2620v2[math.NT]

    Google Scholar 

  11. Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields (2008), arXiv:0807.4065v3[math.NT]

    Google Scholar 

  12. Hensel, K.: Theorie der algebraischen Zahlen. Teubner, Leipzig (1908)

    Google Scholar 

  13. Montes, J.: Polígonos de Newton de orden superior y aplicaciones aritméticas. PhD thesis, Universitat de Barcelona (1999)

    Google Scholar 

  14. Montes, J., Nart, E.: On a theorem of Ore. Journal of Algebra 146, 318–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ore, Ø.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928)

    Google Scholar 

  16. Pauli, S.: Factoring Polynomials over Local Fields. Journal of Symbolic Computation 32(5), 533–547 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  18. Shoup, V.: Fast Construction of Irreducible Polynomials over Finite Fields. Journal of Symbolic Computation 17, 371–394 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Veres, O.: On the Complexity of Polynomial Factorization over p-adic Fields. PhD Dissertation, Concordia University (2009), http://www.mathstat.concordia.ca/faculty/ford/Student/Veres/vthp.pdf

  20. Zassenhaus, H.: On Hensel factorization II. In: Symposia Mathematica XV, Instituto Di Alta Matematica, pp. 499–513. Academic Press, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ford, D., Veres, O. (2010). On the Complexity of the Montes Ideal Factorization Algorithm. In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14518-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14517-9

  • Online ISBN: 978-3-642-14518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics