Skip to main content

Improved Constructions for Non-adaptive Threshold Group Testing

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

The basic goal in combinatorial group testing is to identify a set of up to d defective items within a large population of size n ≫ d using a pooling strategy. Namely, the items can be grouped together in pools, and a single measurement would reveal whether there are one or more defectives in the pool. The threshold model is a generalization of this idea where a measurement returns positive if the number of defectives in the pool passes a fixed threshold u, negative if this number is below a fixed lower threshold ℓ ≤ u, and may behave arbitrarily otherwise. We study non-adaptive threshold group testing (in a possibly noisy setting) and show that, for this problem, O(d g + 2 (logd) log(n/d)) measurements (where g : = u − ℓ) suffice to identify the defectives, and also present almost matching lower bounds. This significantly improves the previously known (non-constructive) upper bound O(d u + 1 log(n/d)). Moreover, we obtain a framework for explicit construction of measurement schemes using lossless condensers. The number of measurements resulting from this scheme is ideally bounded by O(d g + 3 (logd) logn). Using state-of-the-art constructions of lossless condensers, however, we come up with explicit testing schemes with O(d g + 3 (logd) quasipoly(logn)) and O(d g + 3 + β poly(logn)) measurements, for arbitrary constant β> 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dorfman, R.: The detection of defective members of large populations. Annals of Mathematical Statistics 14, 436–440 (1943)

    Article  Google Scholar 

  2. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications, 2nd edn. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  3. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  4. Damaschke, P.: Threshold group testing. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 707–718. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chang, H., Chen, H.B., Fu, H.L., Shi, C.H.: Reconstruction of hidden graphs and threshold group testing. Journal of Combinatorial Optimization (2010)

    Google Scholar 

  6. Chen, H.B., Fu, H.L.: Nonadaptive algorithms for threshold group testing. Discrete Applied Mathematics 157, 1581–1585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree expansion beyond the degree/2 barrier. In: Proceedings of the 34th STOC, pp. 659–668 (2002)

    Google Scholar 

  8. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. In: Proc. of the 22nd IEEE CCC (2007)

    Google Scholar 

  9. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Transactions on Information Theory 10, 363–377 (1964)

    Article  MATH  Google Scholar 

  10. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves, and Goppa codes better than the Varshamov-Gilbert bound. Math. Nachrichten 109, 21–28 (1982)

    Article  MATH  Google Scholar 

  12. Gao, H., Hwang, F.K., Thai, M.T., Wu, W., Znati, T.: Construction of d(H)-disjunct matrix for group testing in hypergraphs. Journal of Combinatorial Optimization 12, 297–301 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, H.B., Du, D.Z., Hwang, F.K.: An unexpected meeting of four seemingly unrelated problems: graph testing, DNA complex screening, superimposed codes and secure key distribution. J. Comb. Opt. 14(2-3), 121–129 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stinson, D., Wei, R., Zhu, L.: Some new bounds for cover-free families. Journal of Combinatorial Theory, Series A 90, 224–234 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. D’yachkov, A., Vilenkin, P., Macula, A., Torney, D.: Families of finite sets in which no intersection of ℓ sets is covered by the union of s others. Journal of Combinatorial Theory, Series A 99, 195–218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stinson, D., Wei, R.: Generalized cover-free families. Discrete Mathematics 279, 463–477 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen, H.B., Fu, H.L., Hwang, F.K.: An upper bound of the number of tests in pooling designs for the error-tolerant complex model. Optimization Letters 2(3), 425–431 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kim, H.K., Lebedev, V.: On optimal superimposed codes. Journal of Combinatorial Designs 12, 79–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cheraghchi, M.: Noise-resilient group testing: Limitations and constructions. In: Gȩbala, M. (ed.) FCT 2009. LNCS, vol. 5699, pp. 62–73. Springer, Heidelberg (2009)

    Google Scholar 

  20. Cheng, Y., Du, D.Z.: New constructions of one- and two-stage pooling designs. Journal of Computational Biology 15(2), 195–205 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheraghchi, M. (2010). Improved Constructions for Non-adaptive Threshold Group Testing. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics