Skip to main content

Light-to-Electricity Conversion

  • Chapter
  • First Online:
The Physics of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

  • 9247 Accesses

Abstract

The absorption of light in a semiconductor across the band gap creates free electrons and holes. In particular, for small particle size in powders1 these charge carriers can reach the surface of the semiconductor. At the surface they can react with chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.F. Schubert, Doping in III–V Semiconductors (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  2. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981)

    Google Scholar 

  3. S.L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, New York, 1995)

    Google Scholar 

  4. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–58 (1995)

    Article  Google Scholar 

  5. D. Duonghong, E. Borgarello, M. Gr¨atzel, J. Am. Chem. Soc. 103, 4685 (1981)

    Article  Google Scholar 

  6. K.Y. Jung, Y.Ch. Kang, S.B. Park, J. Mater. Sci. Lett. 16, 1848 (1997)

    Article  Google Scholar 

  7. J.L. Yang, S.J. An, W.I. Park, G.-Ch. Yi, W. Choi, Adv. Mater. 16, 1661 (2004)

    Article  Google Scholar 

  8. Canon Inc., www.canon.com/technology

  9. B.F. Levine, J. Appl. Phys. 74, R1 (1993)

    Article  ADS  Google Scholar 

  10. H.C. Liu, R. Dudek, A. Shen, E. Dupont, C.Y. Song, Z.R. Wasilewski, M. Buchanan, Appl. Phys. Lett. 79, 4237 (2001)

    Article  ADS  Google Scholar 

  11. Fraunhofer-Institut f¨ur Angewandte Festk¨orperphysik, Freiburg, www. iaf.fraunhofer

  12. M.D. Petroff, M.G. Stapelbroek, Blocked impurity band detectors, US Patent 4,568,960, filed 1980, awarded 1986

    Google Scholar 

  13. N.M. Haegel, Proc. SPIE 4999, 182 (2003)

    Article  ADS  Google Scholar 

  14. F. Szmulowicz, F.L. Madarsz, J. Appl. Phys. 62, 2533 (1987)

    Article  ADS  Google Scholar 

  15. H.Melchior, Demodulation and Photodetection Techniques, ed. by F.T. Arecchi,E.O. Schulz-Dubois. Laser Handbook, vol. 1 (North-Holland, Amsterdam, 1972), p. 725–835

    Google Scholar 

  16. G.E. Stillman, C.M. Wolfe, Semicond. Semimet. 12, 291 (1977)

    Article  Google Scholar 

  17. Datasheet Position Sensitive Photodiodes, DL-100–7-KER pin (2002), Silicon Sensor GmbH, Berlin (Germany), www.silicon-sensor.com

  18. S.M. Sze, D.J. Coleman, A. Loya, Solid State Electron. 14, 1209 (1971)

    Article  ADS  Google Scholar 

  19. D. Kuhl, Herstellung und Charakterisierung von MSM Detektoren, PhD Thesis, Technische Universit¨at Berlin, 1992

    Google Scholar 

  20. S.Y. Chou, M.Y. Liu, IEEE J. Quantum Electr. QE-28, 2358 (1992)

    Article  ADS  Google Scholar 

  21. R.J. McIntyre, IEEE Trans. Electron Devices ED-13, 164 (1966)

    Article  Google Scholar 

  22. R.D. Baertsch, IEEE Trans. Electron Devices ED-13, 987 (1966)

    Article  Google Scholar 

  23. W.S. Boyle, G.E. Smith, Bell Syst. Tech. J., 49, 587 (1970)

    Google Scholar 

  24. J.D.E. Beynon, D.R. Lamb (eds.), Charge-Coupled Devices and Their Applications (McGraw-Hill, Maidenhead, 1977)

    Google Scholar 

  25. J.-W. Shi, K.-G. Gan, Y.-J. Chiu, Y.-H. Chen, C.-K. Sun, Y.-J. Yang, J.E.Bowers, IEEE Phot. Technol. Lett. 16, 623 (2001)

    Article  ADS  Google Scholar 

  26. A. Goetzberger, E.H. Nicollian, Bell Syst. Tech. J. 46, 513 (1967)

    Google Scholar 

  27. J.D.E. Beynon, Microelectron. 7, 7 (1975)

    Google Scholar 

  28. Charge-coupled device (CCD) image sensors, MTD/PS-0218, Rev. 1 (2001),Eastman Kodak Company, Rochester, NY, www.kodak.com/go/ccd

  29. J.E. Carnes,W.F. Kosonocky, E.G. Ramberg, IEEE Trans. Electron Devices ED-19, 798 (1972)

    Article  Google Scholar 

  30. C.H. Sequin, M.F. Tompsett, Charge Transfer Devices (Academic, New York, 1975)

    Google Scholar 

  31. D.J. Burt, Int. Conf. Technol. Appl. CCD, University of Edinburgh, 1974, p. 1

    Google Scholar 

  32. SONY Corporation, www.sony.net

  33. B.E. Bayer, Color imaging array, US Patent 3,971,065, filed 1975, awarded 1976

    Google Scholar 

  34. Foveon Inc., www.foveon.com

  35. R.B. Merrill, Color separation in an active pixel cell imaging array using a triple-well structure, US Patent 5,965,875, filed 1998, awarded 1999

    Google Scholar 

  36. Datasheet Avalanche Photodiode Array, AD-LA-16–9-DIL 18 (2002), Silicon Sensor GmbH, Berlin, Germany, www.silicon-sensor.com

  37. Datasheet InGaAs Linear Photodiode Array, SU1024LE-1.7 (2003), Sensors Unlimited, Inc., www.sensorsinc.com

  38. Datasheet Quadrant Photodiode with Position Sensing, QD50–0-SD (2004), Centrovision, OSI Systems, Inc., Newbury Park, CA, USA, www.centrovision.com

  39. J.J. Loferski, The First Forty Years: A Brief History of the Modern Photovoltaic Age. Progress in Photovoltaics, vol. 1, (1993), pp. 67–78

    Google Scholar 

  40. Published in ‘Progress in Photovoltaics: Research and Applications’. The latest tables (version 33) can be found in M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 17, 85 (2009)

    Google Scholar 

  41. R. Leemans, W. Cramer, The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid, Research Report RR-91–18. International Institute of Applied Systems Analyses,Laxenburg, (1991), pp. 61

    Google Scholar 

  42. W.W. G¨artner, Phys. Rev. 116, 84 (1959)

    Article  ADS  Google Scholar 

  43. X. Liu, J. Sites, J. Appl. Phys. 75, 577 (1994)

    Article  ADS  Google Scholar 

  44. H.H. Hovel, Semicond. Semimet. 11, 8 (1975)

    Article  Google Scholar 

  45. S. Hegedus, D. Desai, C. Thompson, Prog. Photovolt: Res. Appl. 15, 587–602 (2007)

    Article  Google Scholar 

  46. C.H. Henry, J. Appl. Phys. 51, 4494 (1980)

    Article  ADS  Google Scholar 

  47. W. Shockley, H.-J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  48. Th. Kirchartz, U. Rau, Phys. Stat. Sol. (A) 205, 2737 (2008)

    Article  ADS  Google Scholar 

  49. J.H. Werner, S. Kolodinski, H.-J. Queisser, Phys. Rev. Lett. 72, 3851 (1994)

    Article  ADS  Google Scholar 

  50. T. Markvart, Phys. Stat. Sol. (A) 205, 2752 (2008)

    Article  ADS  Google Scholar 

  51. A. Hauser, I. Melnyk, P. Fath, S. Narayanan, S. Roberts, T.M. Bruton, Proc. of 3rd World Conference on Photovoltaic Energy Conversion, vol. 2, 1447 (2003)

    Google Scholar 

  52. M.B. Prince, J. Appl. Phys. 26, 534 (1955)

    Article  ADS  Google Scholar 

  53. J. Mandelkorn, J.H. Lamneck, Conf. Rec. 9th IEEE Photovoltaic Spec. Conf. (IEEE, New York, 1972), p. 83

    Google Scholar 

  54. A. Woyte, J. Nijs, R. Belmans, Sol. Energy 74, 217 (2003)

    Article  Google Scholar 

  55. J. W. Bishop, Solar Cells 25, 73 (1988)

    Article  Google Scholar 

  56. K. Wambach, S. Schlenker, I. R¨over, Deutsche Solar AG, Freiberg

    Google Scholar 

  57. R.A. Arndt, J.F. Allison, J.G. Haynos, A. Meulenberg Jr., Conf. Rec. 11th IEEE Photovoltaic Spec. Conf. (IEEE, New York, 1975), p. 40

    Google Scholar 

  58. J.H. Werner, K. Taretto, U. Rau, Solid State Phenom. 80–81, 299 (2001)

    Article  Google Scholar 

  59. M. Imaizumi, T. Ito, M. Yamaguchi, K. Kaneko, J. Appl. Phys. 81, 7635 (1997)

    Article  ADS  Google Scholar 

  60. A.K. Ghosh, C. Fishman, T. Feng, J. Appl. Phys. 51, 446 (1980)

    Article  ADS  Google Scholar 

  61. K.R. Taretto: Modeling and characterization of polycrystalline silicon for solar cells and microelectronics, PhD Thesis, Universit¨at Stuttgart, 2003 1266. NREL, www.nrel.gov/gis/solar.html

  62. NREL, www.nrel.gov/gis/solar.html

  63. Australian CRC for Renewable Energy Ltd. (ACRE), acre.murdoch.edu.au

    Google Scholar 

  64. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007)

    Article  ADS  Google Scholar 

  65. V. Probst, J. Palm, S. Visbeck, T. Niesen, R. T¨olle, A. Lerchenberger, M. Wendl, H. Vogt, H. Calwer, W. Stetter, F. Karg, Sol. Energy Mater. Sol.Cells 90, 3115 (2006)

    Article  Google Scholar 

  66. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)

    Article  ADS  Google Scholar 

  67. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C.Hummelen, Appl. Phys. Lett. 78, 841 (2001)

    Article  ADS  Google Scholar 

  68. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 16, 2016 (2006)

    Article  Google Scholar 

  69. T. Trupke, M.A. Green, P. W¨urfel, J. Appl. Phys. 92, 1668 (2002)

    Article  ADS  Google Scholar 

  70. T. Trupke, M.A. Green, P. W¨urfel, J. Appl. Phys. 92, 4117 (2002)

    Article  ADS  Google Scholar 

  71. A. Luque, A. Mart´ı, Phys. Rev. Lett. 78, 5014 (1997)

    Article  ADS  Google Scholar 

  72. A. Franceschetti, S. Lanya, G. Bester, Low-dimensional systems and nanostructures.Physica E 41, 15 (2008)

    Article  ADS  Google Scholar 

  73. A. Luque, A. Mart´ı, A.J. Nozik, MRS Bull. 32, 236 (2007)

    Google Scholar 

  74. S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, S. Panyakeow, Sol. Energy Mater. Sol. Cells 90, 2968 (2006)

    Article  Google Scholar 

  75. F. Dimroth, Physica Status Solidi (C) 3, 373 (2006)

    Article  ADS  Google Scholar 

  76. R.R. King, D.E. Joslin, H. Karam, Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material, US patent 6,316,715, filed 2000, awarded 2001

    Google Scholar 

  77. Gerg¨o L´etay, Modellierung von III–V Solarzellen, PhD Thesis, Universit¨at Konstanz, 2003

    Google Scholar 

  78. Spectrolab, www.spectrolab.com

  79. F. Dimroth, S. Kurtz, MRS Bull. 32, 230 (2007)

    Google Scholar 

  80. US Department of Energy, www.eere.energy.gov/solar

  81. J.H. Werner, Adv. Solid State Phys. (Festk¨orperprobleme) 44, 51 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Grundmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundmann, M. (2010). Light-to-Electricity Conversion. In: The Physics of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13884-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13884-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13883-6

  • Online ISBN: 978-3-642-13884-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics