Skip to main content

Nanostructures

  • Chapter
  • First Online:
  • 9250 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

When the structural size of functional elements enters the size range of the de Broglie matter wavelength, the electronic and optical properties are dominated by quantum-mechanical effects. The most drastic impact can be seen from the density of states (Fig. 13.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Phillips, J.A. Van Vechten, Phys. Rev. Lett. 23, 1115 (1969)

    Article  ADS  Google Scholar 

  2. E.O. G¨obel, Semiconductor applications in metrology. Adv. Solid State Phys. (Festk¨orperprobleme) 39, 1–12 (1999)

    Article  Google Scholar 

  3. R.P. Feynman, There’s Plenty of Room at the Bottom. After-dinner speech on December 29, 1959 at the annual meeting of the American Physical Society at the California Institute of Technology

    Google Scholar 

  4. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999)

    Google Scholar 

  5. M. Grundmann (ed.), Nano-Optoelectronics, Concepts, Physics and Devices, (Springer, Heidelberg, 2002)

    MATH  Google Scholar 

  6. E. Kapon, M. Walther, J. Christen, M. Grundmann, C. Caneau, D.M. Hwang, E. Colas, R. Bhat, G.H. Song, D. Bimberg, Superlatt. Microstruct. 12, 491 (1992)

    Article  ADS  Google Scholar 

  7. M. Grundmann, J. Christen, M. Joschko, O. Stier, D. Bimberg, E. Kapon, Semicond. Sci. Technol. 9, 1939 (1994)

    Article  ADS  Google Scholar 

  8. L. Pfeiffer, K.W. West, H.L. St¨ormer, J.P. Eisenstein, K.W. Baldwin, D. Gershoni, J. Spector, Appl. Phys. Lett. 56, 1697 (1990)

    Article  ADS  Google Scholar 

  9. M. Grundmann, D. Bimberg, Phys. Rev. B 55, 4054 (1997)

    Article  ADS  Google Scholar 

  10. W. Wegscheider, G. Schedelbeck, G. Abstreiter, M. Rother, M. Bichler, Phys. Rev. Lett. 79, 1917 (1997)

    Article  ADS  Google Scholar 

  11. A.P. Levitt (ed.), Whisker Technology (JohnWiley & Sons, New York, 1970)

    Google Scholar 

  12. Zh.L. Wang (ed.), Nanowires and Nanobelts – Materials, Properties and Devices. Metal and Semiconductor Nanowires, vol. I and Nanowires and Nanobelts of Functional Materials, vol. II (Kluwer Academic, Boston, 2004)

    Google Scholar 

  13. M.T. Bj¨ork, B.J. Ohlsen, T. Sass, A.I. Perrson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002)

    Article  ADS  Google Scholar 

  14. M.H. Huang, S. Mao, H. Feick, H. Yan, Y.Wu, H. Kind, E.Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  15. X. Duan, Y. Huang, R. Agarwal, C. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  16. Zh.L. Wang, J. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  17. M. Lorenz, J. Lenzner, E.M. Kaidashev, H. Hochmuth, M. Grundmann, Ann. Physik 13, 39 (2004)

    Article  ADS  Google Scholar 

  18. B.Q. Cao, J. Z´u˜niga-P´erez, N. Boukos, C. Czekalla, H. Hilmer, J. Lenzner, A. Travlos, M. Lorenz, M. Grundmann, Nanotechnology 20, 305701 (2009)

    Article  Google Scholar 

  19. M.V. Barton, J. Appl. Mech. 8, A97 (1941)

    MathSciNet  Google Scholar 

  20. E. Ertekin, P.A. Greaney, D.C. Chrzan, T.D. Sands, J. Appl. Phys. 97, 114325 (2005)

    Article  ADS  Google Scholar 

  21. F. Glas, Phys. Rev. B 74, 121302 (2006)

    Article  ADS  Google Scholar 

  22. X.Y. Kong, Zh.L. Wang, Appl. Phys. Lett. 84, 975 (2004)

    Article  ADS  Google Scholar 

  23. Zh.L. Wang, J. Phys.: Conf. Ser. 26, 1 (2006)

    Article  MATH  ADS  Google Scholar 

  24. M. Grundmann, E. Kapon, J. Christen, D. Bimberg, Electronic and optical properties of quasi one-dimensional carriers in quantum wires, J. Nonlinear Opt. Phys. and Mater. 4, 99 (1995)

    Article  ADS  Google Scholar 

  25. H.J. Xiang, J. Yang, J.G. Hou, Q. Zhu, Appl. Phys. Lett. 89, 223111 (2006)

    Article  ADS  Google Scholar 

  26. M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 58, 10557 (1998)

    Article  ADS  Google Scholar 

  27. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  28. R. Santoprete, B. Koiller, R.B. Capaz, P. Kratzer, Q.K.K. Liu, M. Scheffler, Phys. Rev. B 68, 235311 (2003)

    Article  ADS  Google Scholar 

  29. Th. Maltezopoulos, A. Bolz, C. Meyer, C. Heyn, W. Hansen, M. Morgenstern, R. Wiesendanger, Phys. Rev. Lett. 91, 196804 (2003)

    Article  ADS  Google Scholar 

  30. O. Stier, Theory of the optical properties of InGaAs/GaAs quantum dots in Nano-Optoelectronics, Concepts, Physics, Devices, ed. by M. Grundmann (Springer, Berlin, 2002)

    Google Scholar 

  31. L.P. Kouwenhoven, N.C. van der Vaart, A.T. Johnson, W. Kool, C.J.P.M. Harmans, J.G. Williamson, A.A.M. Staring, C.T. Foxon, Z. Phys. B 85, 367–73 (1991)

    Article  ADS  Google Scholar 

  32. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996)

    Article  ADS  Google Scholar 

  33. N. Horiguchi, T. Futatsugi, Y. Nakata, N. Yokoyama, Appl. Phys. Lett. 70, 2294 (1997)

    Article  ADS  Google Scholar 

  34. A. Forchel, R. Steffen, M. Michel, A. Pecher, T.L. Reinecke, Proc. 23rd Int. Conf. on the Physics of Semiconductors, Berlin (Germany), ed. by M. Scheffler, R. Zimmermann (World Scientific, Singapore, 1996), p. 1285

    Google Scholar 

  35. K.C. Rajkumar, K. Kaviani, J. Chen, P. Chen, A.Madhukar, D. Rich, Mater. Res. Soc. Symp. Proc. 263, 163 (1992)

    Google Scholar 

  36. W. Weller, private communication (2006)

    Google Scholar 

  37. M. Grundmann, Adv. Solid State Phys. (Festk¨orperprobleme) 35, 123 (1996)

    Article  Google Scholar 

  38. V.A. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures (Springer, Heidelberg, 2004)

    Google Scholar 

  39. V.A. Shchukin, D. Bimberg, Phys. Rev. Lett. 75, 2968 (1995)

    Article  ADS  Google Scholar 

  40. N. Moll, M. Scheffler, E. Pehlke, Phys. Rev. B 58, 4566 (1998)

    Article  ADS  Google Scholar 

  41. D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993)

    Article  ADS  Google Scholar 

  42. D.M. Bruls, P.M. Koenraad, H.W.M. Salemink, J.H. Wolter, M. Hopkinson, M.S. Skolnick, Appl. Phys. Lett. 82, 3758 (2003)

    Article  ADS  Google Scholar 

  43. Q. Xie, A. Madhukar, P. Chen, N. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995)

    Article  ADS  Google Scholar 

  44. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel, Science 285, 1551 (1999)

    Article  Google Scholar 

  45. R. Gago, L. V´asquez, R. Cuerno, M. Varela, C. Ballesteros, J.M. Albella, Appl. Phys. Lett. 78, 3316 (2001)

    Article  ADS  Google Scholar 

  46. R. Gago, L. V´asquez, O. Plantevin, T.H. Metzger, J. Muˆnoz-Garc´ıa, R. Cuerno, M. Castro, Appl. Phys. Lett. 89, 233101 (2006)

    Article  ADS  Google Scholar 

  47. B. Ziberi, F. Frost, B. Rauschenbach, Th. H¨oche, Appl. Phys. Lett. 87, 033113 (2005)

    Article  ADS  Google Scholar 

  48. W.L. Chan, E. Chason, J. Appl. Phys. 101, 121301–1–46 (2007)

    Google Scholar 

  49. B. Ziberi, F. Frost, Th. H¨oche, B. Rauschenbach, Phys. Rev. B 72, 235310 (2005)

    Article  ADS  Google Scholar 

  50. O. Stier, A. Schliwa, R. Heitz, M. Grundmann, D. Bimberg, Phys. Stat. Sol. (B) 224, 115 (2001)

    Article  ADS  Google Scholar 

  51. D.J.P. Ellis, R.M. Stevenson, R.J. Young, A.J. Shields, P. Atkinson, D.A. Ritchie, Appl. Phys. Lett. 90, 011907 (2007)

    Article  ADS  Google Scholar 

  52. B. Urbaszek, R.J. Warburton, K. Karrai, B.D. Gerardot, P.M. Petroff, J.M. Garcia, Phys. Rev. Lett. 90, 247403 (2003)

    Article  ADS  Google Scholar 

  53. R.J. Warburton, C. Sch¨aflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Nature 405, 926 (2000)

    Article  ADS  Google Scholar 

  54. F. Findeis, A. Zrenner, G. B¨ohm, G. Abstreiter, Solid State Commun. 114, 227 (2000)

    Article  ADS  Google Scholar 

  55. L. Besombes, Y. L´eger, L. Maingault, D. Ferrand, H. Mariette, Phys. Rev. Lett. 93, 207403–1 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Grundmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundmann, M. (2010). Nanostructures. In: The Physics of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13884-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13884-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13883-6

  • Online ISBN: 978-3-642-13884-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics