Skip to main content

Finite Element Vibration Analysis of MHSS Based on 3D Tomography Image Processing

  • Chapter
  • First Online:
Materials with Complex Behaviour

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 3))

Abstract

Well-known advantages of cellular metals are their high ability for energy absorption, good damping behaviour, sound absorption and a high specific stiffness. Metallic hollow sphere structures (MHSS) feature a new group of advanced composite materials characterised by high geometrical reproducibility leading to stable properties in comparison to foams. This paper presents a Finite Element (FE) model for vibration analysis of MHSS. Due to the fact that an extraordinary detailed model would exceed available computing resources we developed a proper FE model with special description for hollow spheres and interconnections. Our approach uses model configurations such as cubic centred, face centred or hexagonal closest packing structures. We perform vibration analysis using the real geometry gained by Computed Tomography (CT) images. The location, centre point and radius of each sphere have to be determined for a CT based simulation. Therefore, an image processing method will be presented in detail. The numerical results for different structures are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.N., Metal foam – News. Composites 2, 11 (1971)

    Google Scholar 

  2. H. Bray, Design opportunities with metal foam. Eng. Mater. Des. 16, 16–16 (1972)

    Google Scholar 

  3. R.R. Barton, F.W.S. Carter, T.A. Roberts, Use of reticulated metal foam as flash-back arrestor elements. Chem. Eng. 291, 708–708 (1974)

    Google Scholar 

  4. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    Article  CAS  Google Scholar 

  5. J. Baumeister, überblick – Verfahren zur Herstellung von Metallschäumen. Technische Mitteilungen. 92, 94–99 (1999)

    CAS  Google Scholar 

  6. A.G. Evans, J.W. Hutchinson, M.F. Ashby, Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171–221 (1999)

    Article  Google Scholar 

  7. S.L. Lopatnikov, B.A. Gama, J.W. Gillespie, Modeling the progressive collapse behaviour of metal foams. Int. J. Impact Eng. 34, 587–595 (2007)

    Article  Google Scholar 

  8. I.S. Golovin, H.R. Sinning, Damping in some cellular metallic materials. J. Alloys Compd. 355, 2–9 (2003)

    Article  CAS  Google Scholar 

  9. I.S. Golovin, H.R. Sinning, Internal friction and damping behaviour of metallic foams and some related structures. Mat. Sci. Eng. 370, 504–511 (2004)

    Article  Google Scholar 

  10. R. Neugebauer, T. Hipke, J. Hohlfeld, R. Thümmler, Metal foam as a combination of lightweight engineering and damping. In Cellular Metals and Polymers, ed. by R.F. Singer, C. Krner, V. Altstdt, H. Mnstedt (Trans Tech Publications, Zuerich, 2005), pp. 13–18

    Google Scholar 

  11. J. Hübelt, G. Bingel, Excellent sound absorption by metal hollow sphere structures. Cellmet News 1, 1–2 (2006)

    Google Scholar 

  12. T.J. Lu, C. Chen, Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Mater. 47, 1469–1485 (1999)

    Article  CAS  Google Scholar 

  13. J.W. Paek, B.H. Kang, S.Y. Kim, J.M. Hyun, Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21, 453–464 (2000)

    Article  CAS  Google Scholar 

  14. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide (Butterworth-Heinemann, Boston, MA, 2000)

    Google Scholar 

  15. T. Fiedler, A. Öchsner, J. Grácio, G. Kuhn, Modelling the mechanical behaviour of adhesively bonded and sintered hollow-sphere structure. Mech. Compos. Mater. 41, 405–422 (2005)

    Article  Google Scholar 

  16. Alm GmbH, Big AFS test structure for Ariane rocket V booster. Cellmet News 1, 4–4 (2006)

    Google Scholar 

  17. J. Zhou, P. Shrotriya, W.O. Soboyejo, On the deformation of aluminum lattice block structures: From struts to structures. Mech. Mater. 36, 723–737 (2004)

    Article  Google Scholar 

  18. A. Rousset, J.P. Bonino, Y. Blottiere, C. Rossignol, Process for the Production of Porous Metal Bodies. French Patent 8707440, 1987

    Google Scholar 

  19. H.P. Degischer, B. Kriszt, Handbook of Cellular Metals (Wiley-VCH, Germany, 2002)

    Book  Google Scholar 

  20. T. Fiedler, A. Öchsner, On the thermal conductivity of adhesively bonded and sintered hollow sphere structures (HSS). Mater. Sci. Forum 553, 39–44 (2007)

    Article  CAS  Google Scholar 

  21. H.J. Böhm, D.H. Pahr, T. Daxner, Computional and Experimental Mechanics of Advanded Materials, Chapter Analaytical and Numerical Methods for Modeling the Thermomechanical and Thermophysical Behavior ofMicrostructuredMaterial (Springer, Vienna, 2009), pp. 167–223

    Google Scholar 

  22. H. Schulz-Mirbach, Invariant features for gray scale images. Proceedings of DAGM Annual Pattern Recognition Symposium, Bielefeld (1995)

    Google Scholar 

  23. J. Fehr, O. Ronneberger, J. Schulz, T. Schmidt, M. Reisert, H. Burkhardt, Invariance via group-integration: A feature framework for 3D biomedical image analysis. Proceedings of Computer Graphics and Imaging (CGIM), Innsbruck, Austria (2008)

    Google Scholar 

  24. J. Schulz, T. Schmidt, O. Ronneberger, H. Burkhardt, T. Pasternak, A. Dovzhenko, K. Palme, Fast scalar and vectorial grayscale based invariant features for 3D cell nuclei localization and classification. Proceedings of DAGM Annual Pattern Recognition Symposium, New York, NY (2006)

    Google Scholar 

  25. D.H. Ballard, Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13, 111–122 (1981)

    Article  Google Scholar 

  26. R. Winkler, M. Merkel, A. Öchsner, W. Günter, On the vibration analysis of adhesively bonded hollow sphere structure. Materialwiss. Werkst. 39, 139–142 (2008)

    Article  Google Scholar 

  27. A. Öchsner, C. Augustin, Multifunctional Metallic Hollow Sphere Structure (Springer, Berlin, 2009)

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledged the kind help of Timo Bernthaler, Ralf Löffler (Materials Engineering, University Aalen, Germany) and Walter Leis (GTA Foundry Technology Aalen, Germany) for X-ray scanning our MHSS Samples. We thank Glatt Company for providing material. Janina Schulz was with the Chair of Pattern Recognition and Image Processing of the Albert-Ludwigs-University of Freiburg, Germany, while contributing to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winkler, R., Schulz, J., Merkel, M., Öchsner, A. (2010). Finite Element Vibration Analysis of MHSS Based on 3D Tomography Image Processing. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour. Advanced Structured Materials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12667-3_15

Download citation

Publish with us

Policies and ethics