Skip to main content

Chebfun: A New Kind of Numerical Computing

  • Chapter
  • First Online:

Part of the book series: Mathematics in Industry ((TECMI,volume 15))

Summary

The functionalities of the chebfun and chebop systems are surveyed. The chebfun system is a collection of Matlab codes to manipulate functions in a manner that resembles symbolic computing. The operations, however, are performed numerically using polynomial representations. Chebops are built with the aid of chebfuns to represent linear operators and allow chebfun solutions of differential equations. In this article we present examples to illustrate the simplicity and effectiveness of the software. Among other problems, we consider edge detection in logistic map functions and the solution of linear and nonlinear differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25(5), 1743–1770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pachón, R., Platte, R.B., Trefethen, L.N.: Piecewise-smooth chebfuns. IMA J. Numer. Anal. doi:10.1093/imanum/drp008 (2009)

    Google Scholar 

  3. Driscoll, T.A., Bornemann, F., Trefethen, L.N.: The chebop system for automatic solution of differential equations. BIT Numer. Math. 48(4), 701–723 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci. 1(1), 9–19 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd, J.P.: Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Quart. J. Math. 12, 61–68 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Salzer, H.E.: Lagrangian interpolation at the Chebyshev points X n≡cos(νπ∕n), ν=0(1)n; some unnoted advantages. Comput. J. 15, 156–159 (1972)

    MATH  MathSciNet  Google Scholar 

  9. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4), 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Trefethen, L.N., Pachón, R., Platte, R.B., Driscoll, T.A.: Chebfun version 2. http://www.maths.ox.ac.uk/chebfun/ (2008)

  11. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  12. Bresten, C.L., Jung, J.-H.: A study on the numerical convergence of the discrete logistic map. Commun. Nonlinear Sci. 14(7), 3076–3088 (2009)

    Article  MathSciNet  Google Scholar 

  13. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  14. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia, PA (2000)

    MATH  Google Scholar 

  15. O’Malley, R. Jr.: Singularly perturbed linear two-point boundary value problems. SIAM Rev. 50(3), 459–482 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Orszag, S. A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971)

    Article  MATH  Google Scholar 

  17. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. I. Springer, New York (1999). Reprint of the 1978 original

    Google Scholar 

  18. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567–576 (1982/1983).

    Google Scholar 

  19. Trefethen, L.N.: Householder triangularization of a quasimatrix. IMA J. Numer. Anal. doi:10.1093/imanum/drp018 (2009)

    Google Scholar 

  20. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Platte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Platte, R.B., Trefethen, L.N. (2010). Chebfun: A New Kind of Numerical Computing. In: Fitt, A., Norbury, J., Ockendon, H., Wilson, E. (eds) Progress in Industrial Mathematics at ECMI 2008. Mathematics in Industry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12110-4_5

Download citation

Publish with us

Policies and ethics