Skip to main content

Investigation of Neonatal EEG Time Series Using a Modified Nonlinear Dynamical Analysis

  • Conference paper
Neural Information Processing (ICONIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5864))

Included in the following conference series:

  • 1698 Accesses

Abstract

The Grassberger-Procaccia algorithm for computation of the correlation dimension is widely used nonlinear dynamical analysis techniques for EEG time series analysis. Even though the correlation dimension D 2 is the easiest dimension to compute, major drawback of the Grassberger-Procaccia algorithm is its extensive computational requirements. To overcome this, we introduce a modified computational algorithm referred to as the partial correlation integral. The partial correlation integral algorithm provides an approximation of the correlation dimension referred to as the dimensional exponent. Similar to the correlation dimension, the dimensional exponent can serve as a relative index of the complexity of a nonlinear dynamical system. In this study, the partial correlation integral algorithm is applied to analyze neonatal EEG sleep data. From the computational results, conclusions consistent with those made in previous studies using the correlation dimension are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  2. Pritchard, W.S., Duke, D.W.: Measuring chaos in the brain: a tutorial review of EEG dimension estimation. Brain Cogn. 27, 353–397 (1995)

    Article  Google Scholar 

  3. Stam, C.J., Pritchard, W.S.: Dynamics underlying rhythmic and non-rhythmic variants of abnormal, waking delta activity. Int. J. Psychophysiol. 34, 5–20 (1999)

    Article  Google Scholar 

  4. Ferri, R., et al.: Non-linear EEG measures during sleep: effects of the different sleep stages and cyclic alternating pattern. Int. J. Psycholphysiol. 43, 273–286 (2002)

    Article  Google Scholar 

  5. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A. 34, 2427–2432 (1986)

    Article  Google Scholar 

  6. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A. 7, 1055–1073 (1990)

    Article  MathSciNet  Google Scholar 

  7. Janjarasjitt, S., Scher, M.S., Loparo, K.A.: Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between neurodevelopment and complexity. Clin Neurophysiol. 119, 822–836 (2008)

    Article  Google Scholar 

  8. Janjarasjitt, S., Scher, M.S., Loparo, K.A.: Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity. Clin. Neurophysiol. 119, 1812–1823 (2008)

    Article  Google Scholar 

  9. Takens, F.: Detecting strange attractors in turbulence. Dynamical Systems and Turbulence 898, 366–381 (1981)

    Article  MathSciNet  Google Scholar 

  10. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    Article  Google Scholar 

  11. Albano, A.M., Muench, J., Schwartz, C., Mees, A.I., Rapp, P.E.: Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A 38, 3017–3026 (1988)

    Article  MathSciNet  Google Scholar 

  12. Fraser, A.M., Swinney, H.I.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33, 1134–1140 (1986)

    Article  MathSciNet  Google Scholar 

  13. Albano, A.M., Passamante, A., Farrell, M.E.: Using the higher-order correlations to define an embedding window. Physica D 54, 85–97 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rosenstein, M.T., Collins, J.J., De Lucca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D 73, 82 (1994)

    Article  MathSciNet  Google Scholar 

  15. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  16. Pope, J.E., Werner, S.S., Birkford, R.G.: Atlas of Neonatal Electroencephalography. Raven Press, New York (1992)

    Google Scholar 

  17. Janjarasjitt, S., Ocak, H., Loparo, K.A.: Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. J. Sound and Vibration 317, 112–126 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janjarasjitt, S., Scher, M.S., Loparo, K.A. (2009). Investigation of Neonatal EEG Time Series Using a Modified Nonlinear Dynamical Analysis. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10684-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10682-8

  • Online ISBN: 978-3-642-10684-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics