Skip to main content

Predictive Modelling in Mechanobiology: Combining Algorithms for Cell Activities in Response to Physical Stimuli Using a Lattice-Modelling Approach

  • Chapter
Computer Methods in Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 1))

Abstract

Computer simulation is a cornerstone of engineering design of high performance mechanical engineering equipment. However computer simulation is not so much used in the design of medical devices. The reasons for this are multifactorial and have their origin in the scepticism that biologists (and therefore clinicians) have regarding the plausibility of actually including all relevant factors in a computational model. In this work we have set out to model the response of tissues to changes in their mechanical environment, which could be caused by the presence of an implant or by damage of the tissue. We have used a lattice modelling approach, where the domain under analysis is discretized using both a finite element grid to compute biophysical stimuli and a ‘lattice’ to model cell activities. We applied the approach to two problems: (i) healing after bone fracture, and (ii) tissue regeneration inside a scaffold implanted into the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Meulen, M.C.H., Huiskes, R.: Why mechanobiology? A survey article. Journal of Biomechanics 35, 401–414 (2002)

    Article  Google Scholar 

  2. Pauwels, F.: A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z. Anat. Entwickl. Gesch. 121, 478–515 (1960)

    Article  Google Scholar 

  3. Carter, D., Blenman, P., Beaupré, G.: Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Ortho. Res. 6, 736–748 (1988)

    Article  Google Scholar 

  4. Claes, L., Heigele, C.: Magnitudes of local stress and strain along bony surfaces predicts the course and type of fracture healing. Journal of Biomechanics 32, 255–266 (1999)

    Article  Google Scholar 

  5. Prendergast, P.J., Huiskes, R., Søballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. Journal of Biomechanics 30, 539–548 (1997)

    Article  Google Scholar 

  6. Andreykiv, A., van Keulen, F., Prendergast, P.J.: Simulation of fracture healing incorporating mechano-regulation of tissue differentiation and dispersal/proliferation of cells. Biomech. Model. Mechanobiol. 7, 443–461 (2008)

    Article  Google Scholar 

  7. Isaksson, H., Wilson, W., van Donkellaar, C.C., Huiskes, R., Ito, K.: Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of Biomechanics 39, 1507–1516 (2006)

    Article  Google Scholar 

  8. Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. Journal of Biomechanics 35, 1163–1171 (2002)

    Article  Google Scholar 

  9. Hayward, L.N.M., Morgan, E.F.: Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech. Model Mechanobio (2009), doi:10.1007/s10237-009-0148-3

    Google Scholar 

  10. Kelly, D.J., Prendergast, P.J.: Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. Journal of Biomechanics 38, 1413–1422 (2005)

    Article  Google Scholar 

  11. Isaksson, H., Comas, O., van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. Journal of Biomechanics 40, 2002–2011 (2006)

    Article  Google Scholar 

  12. Morgan, E.F., Longaker, M.T., Carter, D.R.: Relationships between tissue dilatation and differentiation in distraction osteogenesis. Matrix Biol. 25(2), 94–103 (2006)

    Article  Google Scholar 

  13. Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28, 5544–5554 (2007)

    Article  Google Scholar 

  14. Kelly, D.J., Prendergast, P.J.: Prediction of optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Engineering 12, 2509–2519 (2006)

    Article  Google Scholar 

  15. Geris, L., Andreykiv, A., van Oosterwyck, H., van der Sloten, J., van Keulen, F., Duyck, J., Naert, I.: Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber. Journal of Biomechanics 37, 763–769 (2008)

    Article  Google Scholar 

  16. Huiskes, R., van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous tissue differentiation. J. Mater. Sci.: Mater. Med. 8, 785–788 (1997)

    Article  Google Scholar 

  17. Liu, X., Niebur, G.L.: Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech. Model. Mechanobiol. 7, 335–344 (2008)

    Article  Google Scholar 

  18. Simpson, M.J., Merrifield, A., Landman, K.A., Hughes, B.D.: Simulating invasion with cellular automata: Connecting cell-scale and population-scale properties. Physical Review E76 (2007)

    Google Scholar 

  19. Isaksson, H., van Donkelaar, C., Huiskes, R., Ito, K.: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. Journal of Theoretical Biology 252, 230–246 (2008)

    Article  Google Scholar 

  20. Pérez, M., Prendergast, P.J.: Random-walk model of cell-dispersal included in mechanobiological simulation of tissue differentiation. Journal of Biomechanics 40, 2244–2253 (2007)

    Article  Google Scholar 

  21. Claes, L., Eckert-Hubner, K., Augat, P.: The fracture gap size influences the local vascularisation and tissue differentiation in callus healing. Langenbecks Arch. Surg. 388, 316–322 (2003)

    Article  Google Scholar 

  22. Checa, S., Prendergast, P.J.: A Mechanobiological Model for Tissue Differentiation that Includes Angiogenesis: A Lattice-Based Modeling Approach. Annals of Biomed Eng. 37, 129–145 (2009)

    Article  Google Scholar 

  23. Kanichai, M., Ferguson, D., Prendergast, P.J., Campbell, V.A.: Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and Hypoxia-Inducible Factor (HIF)-1α. Journal of Cellular Physiology 216, 708–715 (2008)

    Article  Google Scholar 

  24. Carmeliet, P., Jain, M.K.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2008)

    Article  Google Scholar 

  25. Byrne, D.P.: Computational modelling of bone regeneration using a three-dimensional lattice approach, PhD thesis, University of Dublin (2008)

    Google Scholar 

  26. Duda, G.N., Mandruzzato, F., Heller, M., Kassi, J.P., Khodadadyan, C., Haas, N.P.: Mechanical conditions in the internal stabilization of proximal tibial defects. Clinical Bio-mechanics 17(1), 64–72 (2002)

    Article  Google Scholar 

  27. Kneser, U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Strater, J., Möbest, D., Horch, R.E., Stark, G.B., Schaefer, D.J.: Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J. Cell. Mol. Med. 10, 695–707 (2006)

    Article  Google Scholar 

  28. Prendergast, P.J., Checa, S., Lacroix, D.: Computational models for tissue differentiation. In: De, S., Guilak, F., Mofrad, M. (eds.) Computational Methods in Biomechanics, Springer, New York (in press, 2009)

    Google Scholar 

  29. Geris, L., Vandamme, K., Naert, I., van der Sloten, J., Duyck, J.: Application of mechanoregulatory models to simulate periimplant tissue formation in an in vivo bone chamber. Journal of Biomechanics 41, 145–154 (2008)

    Article  Google Scholar 

  30. Khayyeri, H., Checa, S., Tagil, M., Prendergast, P.J.: Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J. Orthop. Res. (in press) (2009)

    Google Scholar 

  31. Clapworthy, G., Viceconti, M., Coveney, P.V., Kohl, P.: The virtual physiological human: building a framework for computational biomedicine. Phil. Trans. R. Soc. 366, 2975–2978 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Checa, S., Byrne, D.P., Prendergast, P.J. (2010). Predictive Modelling in Mechanobiology: Combining Algorithms for Cell Activities in Response to Physical Stimuli Using a Lattice-Modelling Approach. In: Kuczma, M., Wilmanski, K. (eds) Computer Methods in Mechanics. Advanced Structured Materials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05241-5_22

Download citation

Publish with us

Policies and ethics