Skip to main content

Modeling Concrete at Early Age Using Percolation

  • Chapter
Computer Methods in Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 1))

  • 1448 Accesses

Abstract

The prediction of early age behavior of cementitious materials is of particular importance when it comes to the prediction of the crack occurring risks. Amongst the most important parameters that define the hydrating material are its elastic properties and the changes in volume that arise due to the very reaction of hydration. On a discrete generated microstructure, a percolation – type approach is applied. A forest fire algorithm allows taking into account the binding role played by the hydrates, and it reveals a threshold of hydration below which the rigidity of the concrete is negligible. The evolution of elastic characteristics is obtained by using a homogenization method applied to the percolated microstructure. Autogenous shrinkage is assumed to be due to the rise of a capillary pressure, the latter itself being a consequence of the hydration reaction. The capillary pressure is obtained from a model for desorption isotherm and is applied to the deformable skeleton corresponding to the percolated microstructure. Using this approach and Biot’s theory, it is possible to compute the autogenous shrinkage and its evolution around the threshold of percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, P., Torrenti, J.M., Ulm, F.J.: Comportement du béton au jeune âge, Paris, Hermès (2004)

    Google Scholar 

  2. Torrenti, J.M., Benboudjema, F.: Mechanical threshold of concrete at year early age. Materials and Structures 38(277), 299–304 (2005)

    Article  Google Scholar 

  3. Smilauer, V., Bittnar, Z.: Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cem. Conc. Res. 36 (2006)

    Google Scholar 

  4. Stefan, L., Benboudjema, F., Torrenti, J.M., Bissonnette, B.: Prediction of elastic modulus of cement pastes at early ages. Accepted for publication in Computational Mat. Sciences (2009)

    Google Scholar 

  5. Powers, T.C., Brownyard, T.L.: Studies of the physical properties of hardened portland cement paste (nine parts). Journal of the American Concrete Institution 43 (October 1946 to April 1947)

    Google Scholar 

  6. Jennings, H.M., Tennis, P.D.: Model for the developing microstructure in Portland cement pastes. J. Am. Ceram. Soc. 77(12), 3161–3172 (1994)

    Article  Google Scholar 

  7. Tennis, P.D., Jennings, H.M.: A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Conc. Res. 30, 855–863 (2000)

    Article  Google Scholar 

  8. Bentz, D.P.: CEMHYD3D: Three-dimensional cement hydration and microstructure a development modelling package, version 2.0., NISTIR 6485, U.S. Department of Commerce (2000), http://ciks.cbt.nist.gov/monograph

  9. van Breugel, K.: Simulation of hydration and formation of structure in hardening cement-based materials. PhD Thesis, Technical University Delft, Netherlands (1997)

    Google Scholar 

  10. Bishnoi, S., Scrivener, K.: Microstructural Modelling of Cementitious Materials using Vector Approach. In: Proc. the 12th International Congress on the Chemistry of Cement, Montreal, Canada (July 2007)

    Google Scholar 

  11. Taylor, H.F.W.: Modification of the Bogue Calculation. Adv. Cem. Res. 2(6), 73–77 (1989)

    Google Scholar 

  12. Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., Sorrentino, F.: Determination of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem. Conc. Res. 31(4), 555–561 (2001)

    Article  Google Scholar 

  13. Damidot, D., Velez, K., Sorrentino, F.: Characterisation of interstital transition zone (ITZ) of high performance cement by nanoindentation technique. In: Proc. 11th International Congress on Chemistry of Cement, Durban, South Africa, May 11-16 (2003) CD-ROM

    Google Scholar 

  14. Constantinides, G., Ulm, F.-J.: The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Conc. Res. 34(1), 67–80 (2004)

    Article  Google Scholar 

  15. Monteiro, P.J.M., Chang, C.T.: The elastic moduli of calcium hydroxide. Cem. Conc. Res. 25(8), 1605–1609 (1995)

    Article  Google Scholar 

  16. Kamali, S., Moranville, M., Garboczi, E.G., Prene, S., Gerard, B.: Hydrate Dissolution Influence on the Young’s Modulus of Cement Paste. In: Li, et al. (eds.) Fracture Mechanics of Concrete Structures (FraMCoS-V), Proc. intern. symp., Vail (2004)

    Google Scholar 

  17. Haecker, C.-J., Garboczi, E.J., Bullard, J.W., Bohn, R.B., Sun, Z., Shah, S.P., Voigt, T.: Modeling the linear elastic properties of Portland cement paste. Cem. Conc. Res. 35, 1948–1960 (2005)

    Article  Google Scholar 

  18. Smilauer, V., Bittnar, Z.: Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cem. Conc. Res. 36, 1708–1718 (2006)

    Article  Google Scholar 

  19. Bernard, O., Ulm, F.J., Lemarchand, E.: A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem. Conc. Res. 33(9), 1293–1309 (2003)

    Article  Google Scholar 

  20. Sanahuja, J., Dormieux, L., Chanvillard, G.: Modelling elasticity of a hydrating cement paste. Cem. Conc. Res. 37, 1427–1439 (2007)

    Article  Google Scholar 

  21. Sun, Z., Garboczi, E.J., Shah, S.P.: Modeling the elastic properties of concrete composites: Experiment, differential effective medium theory and numerical simulation. Cem. Conc. Res. 29, 22–38 (2007)

    Article  Google Scholar 

  22. Hua, C., Acker, P., Ehrlacher, A.: Analyses and models of the autogenous shrinkage of hardening cement paste: I Modelling at macroscopic scale. Cem. Conc. Res. 25(7), 1457–1468 (1995)

    Article  Google Scholar 

  23. Michaud, P.M.: Vers une approche chimio-poro-viscoelastique du comportement au jeune age des betons. PhD thesis, INSA de Lyon, Lyon (2006)

    Google Scholar 

  24. Haouas, A.: Comportement au jeune âge des matériaux cimentaires – caractérisation et modélisation chimio-hydro-mécanique du retrait. PhD thesis, Ecole Normale Supérieure de Cachan, Cachan (2007)

    Google Scholar 

  25. Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials Part I: Essential tool for analysis of hygral behavior and its relation to pore structure. Cem. Conc. Res. 37, 414–437 (2007)

    Article  Google Scholar 

  26. Chateau, X., Dormieux, L.: Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Meth. Geomech. (2002)

    Google Scholar 

  27. Coussy, O.: Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. Int. J. Numer. Anal. Meth. Geomech. 31(15), 1675–1694 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Stefan, L., Benboudjema, F., Torrenti, J.M., Bissonette, B. (2010). Modeling Concrete at Early Age Using Percolation. In: Kuczma, M., Wilmanski, K. (eds) Computer Methods in Mechanics. Advanced Structured Materials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05241-5_17

Download citation

Publish with us

Policies and ethics