Skip to main content

A Multiscale Molecular Dynamics / Extended Finite Element Method for Dynamic Fracture

  • Chapter
  • 1506 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 1))

Abstract

A multiscale method is presented which couples a molecular dynamics approach for describing fracture at the crack tip with an extended finite element method for discretizing the remainder of the domain. After recalling the basic equations of molecular dynamics and continuum mechanics the discretization is discussed for the continuum subdomain where the partition-of-unity property of finite element shape functions is used, since in this fashion the crack in the wake of its tip is naturally modelled as a traction-free discontinuity. Next, the zonal coupling method between the atomistic and continuum models is described, including an assessment of the energy transfer between both domains for a one-dimensional problem. It is discussed how the stress has been computed in the atomistic subdomain, and a two-dimensional computation is presented of dynamic fracture using the coupled model. The result shows multiple branching, which is reminiscent of recent results from simulations on dynamic fracture using cohesive-zone models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffith, A.A.: The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A221, 163–198 (1921)

    Google Scholar 

  2. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics 24, 361–364 (1957)

    Google Scholar 

  3. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35, 379–386 (1968)

    Google Scholar 

  4. Henshell, R.D., Shaw, K.G.: Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 9, 495–507 (1975)

    Article  Google Scholar 

  5. Barsoum, R.S.: On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering 10, 25–37 (1976)

    Article  Google Scholar 

  6. Fleming, M., Chu, Y.A., Moran, B., Belytschko, T.: Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering 40, 1483–1504 (1997)

    Article  Google Scholar 

  7. Krysl, P., Belytschko, T.: The Element-free Galerkin Method fod dynamic propagation of arbitrary 3-D cracks. International Journal for Numerical Methods in Engineering 44, 767–780 (1999)

    Article  Google Scholar 

  8. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45, 601–620 (1999)

    Article  Google Scholar 

  9. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150 (1999)

    Article  Google Scholar 

  10. Réthoré, J., de Borst, R., Abellan, M.A.: A two-scale approach for fluid flow in fractured porous media. International Journal for Numerical Methods in Engineering 71, 780–800 (2007)

    Article  Google Scholar 

  11. Albuquerque, E.L., Sollero, P., Aliabadi, M.H.: Dual boundary element method for anisotropic dynamic fracture mechanics. International Journal for Numerical Methods in Engineering 59, 1187–1205 (2004)

    Article  Google Scholar 

  12. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7, 55–129 (1962)

    Article  Google Scholar 

  13. Dugdale, D.S.: Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8, 100–108 (1960)

    Article  Google Scholar 

  14. Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–782 (1976)

    Article  Google Scholar 

  15. Needleman, A.: A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54, 525–531 (1987)

    Article  Google Scholar 

  16. Rots, J.G.: Smeared and discrete representations of localized fracture. International Journal of Fracture 51, 45–59 (1991)

    Article  Google Scholar 

  17. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434 (1994)

    Article  Google Scholar 

  18. Wells, G.N., Sluys, L.J.: Discontinuous analysis of softening solids under impact loading. International Journal for Numerical and Analytical Methods in Geomechanics 25, 691–709 (2001)

    Article  Google Scholar 

  19. Wells, G.N., de Borst, R., Sluys, L.J.: A consistent geometrically non–linear approach for delamination. International Journal for Numerical Methods in Engineering 54, 1333–1355 (2002)

    Article  Google Scholar 

  20. de Borst, R.: Numerical aspects of cohesive zone models. Engineering Fracture Mechanics 70, 1743–1757 (2003)

    Article  Google Scholar 

  21. Duarte, C.A., Hamzeh, L.T.J., Tworzydlo, W.W.: A generalized finite element method for the simulation of three-dimensional crack propagation. Computer Methods in Applied Mechanics and Engineering 190, 2227–2262 (2001)

    Article  Google Scholar 

  22. Réthoré, J., Gravouil, A., Combescure, A.: An energy conserving scheme for dynamic crack growth with the extended finite element method. International Journal for Numerical Methods in Engineering 63, 631–659 (2005)

    Article  Google Scholar 

  23. Menouillard, T., Réthoré, J., Combescure, A.: Efficient explicit time stepping for the extended finite element method. International Journal for Numerical Methods in Engineering 68, 911–939 (2006)

    Article  Google Scholar 

  24. Remmers, J.J.C., de Borst, R., Needleman, A.: A cohesive segments method for the simulation of crack growth. Computational Mechanics 31, 69–77 (2003)

    Article  Google Scholar 

  25. Remmers, J.J.C., de Borst, R., Needleman, A.: The simulation of dynamic crack propagation using the cohesive segments method. Journal of the Mechanics and Physics of Solids 56, 70–92 (2008)

    Article  Google Scholar 

  26. Réthoré, J., de Borst, R., Abellan, M.A.: A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Computational Mechanics 42, 227–238 (2008)

    Article  Google Scholar 

  27. Abraham, F.F., Walkup, R., Gao, H., Duchaineau, M., Diaz De La Rubia, T., Seager, M.: Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening. Proceedings of the National Academy of Sciences 99, 5783–5787 (2002)

    Article  Google Scholar 

  28. Zhou, S.J., Lomdahl, P.S., Voter, A.F., Holian, B.L.: Three-dimensional fracture via large-scale molecular dynamics. Engineering Fracture Mechanics 61, 173–187 (1998)

    Article  Google Scholar 

  29. Miller, R., Ortiz, M., Phillips, R., Shenoy, V., Tadmor, E.B.: Quasicontinuum models of fracture and plasticity. Engineering Fracture Mechanics 61, 427–444 (1998)

    Article  Google Scholar 

  30. Parr, R.G., Gadre, S.R., Bartolotti, L.J.: Local density functional theory of atoms and molecules. Proceedings of the National Academy of Sciences 76, 2522–2526 (1979)

    Article  Google Scholar 

  31. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Physical Review Letters 55, 2471–2474 (1985)

    Article  Google Scholar 

  32. Kolhoff, S., Gumbsch, P., Frischmeister, H.F.: Crack propagation in bcc crystals studied with a combined finite element and atomistic model. Philosophical Magazine A 64, 851–878 (1991)

    Article  Google Scholar 

  33. Shilkrot, L.E., Miller, R.E., Curtin, W.A.: Coupled atomistic and discrete dislocation plasticity. Physical Review Letters 89, 255011–255014 (2002)

    Article  Google Scholar 

  34. Gracie, R., Belytschko, T.: Concurrently coupled atomistic and XFEM models for dislocations and cracks. International Journal of Numerical Methods in Engineering 78, 354–378 (2009)

    Article  Google Scholar 

  35. Ben Dhia, H., Rateau, G.: The Arlequin method as a flexible engineering design tool. International Journal of Numerical Methods in Engineering 62, 1442–1462 (2005)

    Article  Google Scholar 

  36. Prudhomme, S., Ben Dhia, H., Baumann, P.T., Elkhodja, N., Oden, J.T.: Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method. Computer Methods in Applied Mechanics and Engineering 197, 3399–3409 (2008)

    Article  Google Scholar 

  37. Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering 193, 1645–1669 (2004)

    Article  Google Scholar 

  38. Zhang, S.L., Khare, R., Lu, Q., Belytschko, T.: A bridging domain and strain computation method for coupled atomistic-continuum modelling of solids. International Journal of Numerical Methods in Engineering 70, 913–933 (2007)

    Article  Google Scholar 

  39. Guidault, P.A., Belytschko, T.: On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers. International Journal of Numerical Methods in Engineering 70, 322–350 (2007)

    Article  Google Scholar 

  40. Xu, M., Belytschko, T.: Conservation properties of the bridging domain method fod coupled molecular/continuum dynamics. International Journal for Numerical Methods in Engineering 76, 278–294 (2008)

    Article  Google Scholar 

  41. Farhat, C., Harari, I., Hetmaniuk: The discontinuous enrichment method for multiscale analysis. Computer Methods in Applied Mechanics and Engineering 192, 3195–3209 (2003)

    Article  Google Scholar 

  42. Fish, J., Chen, W.: Discrete-to-continuum bridging based on multigrid principles. Computer Methods in Applied Mechanics and Engineering 193, 1693–1711 (2004)

    Article  Google Scholar 

  43. Wagner, G.J., Liu, W.K.: Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics 190, 249–274 (2003)

    Article  Google Scholar 

  44. Farrell, D.E., Park, H.S., Liu, W.K.: Implementation aspects of the bridging scale method and application to intersonic crack propagation. International Journal for Numerical Methods in Engineering 71, 583–605 (2007)

    Article  Google Scholar 

  45. Aubertin, P., Réthoré, J., de Borst, R.: Energy conservation of atomistic/continuum coupling. International Journal for Numerical Methods in Engineering 78, 1365–1386 (2009)

    Article  Google Scholar 

  46. Pan, L., Metzger, D., Niewczas, M.: The meshless dynamic relaxation technique for simulating atomic structures of materials. ASME Publications PVP 441, 15–26 (2002)

    Google Scholar 

  47. Basinski, Z.S., Duesberry, M.S., Taylor, R.: Influence of shear stress on screw dislocations in a model sodium lattice. Canadian Journal of Physics 49, 2160–2180 (1971)

    Google Scholar 

  48. Lutsko, J.F.: Stress and elastic constants in anisotropic solids: molecular dynamics techniques. Journal of Applied Physics 64, 1152–1154 (1988)

    Article  Google Scholar 

  49. Cheung, K.S., Yip, S.: Atomic-level stress in an inhomogeneous system. Journal of Applied Physics 70, 5688–5690 (1991)

    Article  Google Scholar 

  50. Zhou, M.: A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proceedings of the Royal Society. A. London 459, 2347–2392 (2003)

    Article  Google Scholar 

  51. Agrawal, P., Rice, B., Thompson, D.: Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science 515, 21–35 (2002)

    Article  Google Scholar 

  52. Aubertin, P.: Coupling of Atomistic and Continuum Models: Dynamic Crack Propagation. Dissertation, INSA Lyon (2008)

    Google Scholar 

  53. Nose, S.: Constant-temperature molecular dynamics. Journal of Physics: Condensed Matter 2, 115–119 (1990)

    Article  Google Scholar 

  54. Coker, D., Rosakis, A.J., Needleman, A.: Dynamic crack growth along a polymer composite-homalite interface. Journal of the Mechanics and Physics of Solids 51, 425–460 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Aubertin, P., Réthoré, J., de Borst, R. (2010). A Multiscale Molecular Dynamics / Extended Finite Element Method for Dynamic Fracture. In: Kuczma, M., Wilmanski, K. (eds) Computer Methods in Mechanics. Advanced Structured Materials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05241-5_12

Download citation

Publish with us

Policies and ethics