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Abstract. Designers often apply manual or semi-automatic loop and
data transformations on array and loop intensive programs to improve
performance. The transformations should preserve the functionality,
however, and this paper presents an automatic method for constructing
equivalence proofs for the class of static affine programs. The equiva-
lence checking is performed on a dependence graph abstraction and uses
a new approach based on widening to handle recurrences. Unlike tran-
sitive closure based approaches, this widening approach can also handle
non-uniform recurrences. The implementation is publicly available and
is the first of its kind to fully support commutative operations.

1 Introduction

Embedded processors for multimedia and telecom systems are severely resource
constrained. Developers apply aggressive loop and data transformations based
on a combination of automated analysis and manual interventions to reduce
memory requirements and power consumption. A crucial question is whether
the transformed program is equivalent to the original. We address this problem
for the case of static affine programs, i.e., programs with static control flow and
piecewise affine expressions for all loop bounds, conditions and array accesses.

Figure 1 shows a toy example of a pair of programs for which we would like to
prove equivalence. Both programs have the same input array In and output array
Out (a scalar in this case) and the objective is to show that for any value of the
input array(s), both programs produce the same value for the output array(s).
We neither assume an a priori correspondence between the other arrays (the
temporary arrays) of both programs nor between their loops.

The equivalence checking of static affine programs has been previously inves-
tigated by Barthou et al. [1, 6] and Shashidhar et al. [20, 21]. A major challenge
in this line of research is posed by recurrences, i.e., a statement in a loop that (in-
directly) depends on previous iterations of the same statement. Such recurrences
render the representation of the values of the output arrays as a symbolic expres-
sion in terms of only the input arrays, as advocated by some symbolic simulation
based techniques (e.g., [17]) impractical, as the whole loop needs to be effectively
unrolled, or even impossible, if the number of iterations is unknown at analysis
time, as is the case in our running example (Figure 1). All the previous work
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1 A[0]=In[0];
2 for (i=1; i<N; ++i)
3 A[i]=f(In[i])+g(A[i-1]);
4 Out=A[N-1];

(a) Program 1

1 A[0]=In[0];
2 for (i=1; i<N; ++i) {
3 if (i%2 == 0) {
4 B[i]=f(In[i]);
5 C[i]=g(A[i-1]);
6 } else {
7 B[i]=g(A[i-1]);
8 C[i]=f(In[i]);}
9 A[i]=B[i]+C[i];}
10 Out=A[N-1];

(b) Program 2

Fig. 1. Two programs with a recurrence; assuming that + is commutative they are
equivalent

mentioned above relies on the transitive closure operation [14] provided by the
Omega library [13] to handle recurrences, effectively restricting the applicability
of those techniques to programs containing only uniform recurrences.

Another challenge is posed by algebraic transformations, i.e., a transformation
that depends on algebraic properties of operations, e.g., associativity or commu-
tativity. Of the above, only Shashidhar has a proposal for handling algebraic
transformations. However, as stated in Section 9.3.1 of [20], this proposal has
not been implemented. Moreover, it is unable to handle the commutativity of +
in Figure 1 as the order of the arguments has been reversed for only half of the
iterations of the loop.

Furthermore, all the above approaches require both programs to be in dynamic
single assignment (DSA) form [9], i.e., such that each array element is written
at most once, and none of the implementations are publicly available.

Like the previous approaches, we handle recurrences in both programs fully
automatically and we handle any per statement or per array piecewise quasi-
affine loop or data transformation, including combinations of loop interchange,
loop reversal, loop skewing, loop distribution, loop tiling, loop unrolling, loop
splitting, loop peeling and data-reuse transformations. However, unlike those
approaches, ours

– handles programs that perform destructive updates without a preprocessing
step that converts them to dynamic single assignment form,

– handles both uniform and non-uniform recurrences by not relying on a tran-
sitive closure operation, and

– has a publicly available implementation,
– with full support for associative and commutative operations with a fixed

number of arguments.

We define the concept of a dependence graph in Section 2, which we then use
as input for the equivalence checking method of Section 3. Section 4 has imple-
mentation details and Section 5 the final discussion.



Equivalence Checking of Static Affine Programs 601

2 Program Model

Two programs will be considered to be equivalent if they produce the same out-
put values given the same input values. As we treat all operations performed
inside the programs as black boxes, this means that in both programs the same
operations should be applied in the same order on the input data to arrive at
the output. For our equivalence checking, we therefore need to know which op-
erations are performed and how data flows from one operation to another. In
this section, we introduce a program model that captures exactly this infor-
mation. Unlike [20, 21] where an array based representation is used and some
dependence analysis is implicitly performed during the equivalence checking, we
separate the dependence analysis from the equivalence checking, the latter work-
ing on the output of the former. This separation allows us to use standard exact
dataflow analysis [10] or, in future work, fuzzy dataflow analysis [5]. The result-
ing dependence graph is essentially a DSA representation of the program, but
without rewriting the source program in that form as in [20, 21].

For simplicity we assume that input and output arrays are given, that input
arrays are only read and output arrays only written, that each read value is either
input or has been written before, and that there is only one output array. These
assumptions can easily be relaxed. The use of exact dataflow analysis implies
the usual restrictions of static affine programs, i.e., static control flow, quasi-
affine loop bounds and quasi-affine index expressions. Recall that quasi-affine
expressions consist of additions, constant multiplication and integer division by
a constant. We also assume that all functions called in the program are pure.

We will now first present the definition of a dependence graph and then explain
how such a dependence graph can be constructed from dataflow analysis. In
what follows, “⊂” means “strict subset” and “⊆” means “subset”. All sets and
relations may involve parameters.

Definition 1 (Dependence Graph). A dependence graph is a connected di-
rected graph G =< V, E > with a designated output vertex v0 ∈ V with in-
degree 0 and a set I ⊂ V of input vertices, each with out-degree 0. The graph
may have loops and parallel edges. Each vertex v ∈ V is adorned by a tuple
< dv, Dv, fv, rv, lv >, with

– dv a non-negative integer, called the dimension of the node
– Dv a set of dv-tuples of integers, called the iteration domain of the node
– fv a literal, called the operation of the node
– rv a non-negative integer, called the arity of the node
– lv a literal, called the location of the node

and each edge e = (u, v) ∈ E is adorned by a pair < pe, Me >, with

– pe a non-negative integer with 1 ≤ pe ≤ ru, called the argument position
– Me a set of (du + dv)-tuples of integers, called the dependence relation.

Moreover, the following constraints are satisfied. Firstly, ∀u ∈ V, ∀x ∈ Du, ∀p ∈
[1, ru] : ∃! e = (u, v) ∈ E : pe = p and x ∈ dom(Me), i.e., the domains of the
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dependence relations of the edges emanating from a node for a given argument
position partition the domain of the node. The unique edge corresponding to a
point x and an argument position p is denoted eG(x, p). Secondly, for any cycle
in the graph, the composition of the dependence relations Me along the cycle
does not intersect the identity relation, i.e., no element of a domain (indirectly)
depends on itself.

To represent a program by a dependency graph, we use the vertices to represent
computations. We distinguish three kinds of vertices/computations: An output
computation for the output array, an input computation for each input array and
a computation for each function call, each operation and each copy statement.
The dependence graph of Program 1 (Figure 1(a)) is shown in Figure 2. The
graph has one input and one output computation and five other computations,
one for the copy statement in Line 4, one for the addition, one for the compu-
tation of f , and one for the computation of g (all from Line 3) and finally one
for the copy statement in Line 1. As for the annotations of a node v, the pair
(dv, Dv) denotes the set of elements for which the computation is performed. For
input and output computations, dv is the dimension of the respective arrays and
the domain is the set of its elements. As the output of Program 1 is a scalar, the
dimension is 0 and the single element is denoted as (). The input array is one
dimensional and the domain consists of the set of elements from 0 to N − 1. For
other computations, the dimension is determined by the loop nest controlling the
computation, while the domain describes the iterations for which the computa-
tion is performed (dimension 1 and elements 1 to N − 1 for the computations
of Line 3). The pair (fv, rv) reflects the operation being performed and its arity.
For input computations, fv is the name of the input array while rv is set to 0;
for the output computation, fv is the name of the output array and rv is set
to 1. Copy operations are represented by id (for identity) with arity 1 and the
other operations by the name of the operation and its arity. The lv annotation
refers to the program line where the computation is performed; it is not defined
for input and output computations.

Edges arise in three different ways. If, within a given statement, the result of
some function f is used as the jth argument of some function g, then an edge e
is added from the computation u corresponding to g to the computation v cor-
responding to f , with pe = j and Me = {(i; i) | i ∈ Du}. Note that Du = Dv

here since both operations appear in the same statement. Also note that for any
relation M ⊆ Z

du ×Z
dv , we separate the du input dimensions from the dv output

dimensions by a “;”. In general, either or both of du and dv may be zero. Exam-
ples of intra-statement dependences in Figure 2 are the edges from the addition
(computation e) to respectively the computations c and d. If the function of com-
putation u takes an array element as its jth argument and this array element has
been “computed” by the function of computation v (this includes copy and input
computations), then an edge e = (u, v) is added, with pe = j and Me relating the
iterations of u with the corresponding iterations of v. Dataflow analysis is used to
find v and to compute Me by identifying the last statement iteration that wrote
to the array. Since there is exactly one such last iteration for each of the array
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a : In/0

Da = {(i) | 0 ≤ i < N}
b : 1, id/1

M(b,a)={(;i)|i=0}
Db = {()}

c : 3, f/1

M(c,a)={(i;i)|1≤i<N}

Dc = {(i) | 1 ≤ i < N}
d : 3, g/1

M(d,b)={(i; )|i=1}

M(d,e)={(i;i−1)|2≤i<N}

Dd = {(i) | 1 ≤ i < N}

e : 3, +/2

M(e,d)={(i;i)|1≤i<N}
p(e,d)=2M(e,c)={(i;i)|1≤i<N}

p(e,c)=1

De = {(i) | 1 ≤ i < N}

g : Out/1
M(g,f)={( ; )}

Dg = {()}
f : 4, id/1

M(f,e)={( ;N−1)|N≥2}

M(f,b)={( ; )|N=1}
Df = {()}

Fig. 2. Dependence graph of Program 1 in Figure 1. Computations are named from a
to g with a the input and g the output computation. Each computation v is represented
as “v : lv, fv/rv” (lv is absent for input and output computations). To avoid clutter,
the dimension is omitted, while the domain is shown next to the box with the node;
also the argument position pe is only indicated on edges emanating from node e (it is
1 on all other edges).
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Fig. 3. Dependence graph of Program 2 in Figure 1 (some details omitted)

elements, the first constraint of Definition 1 is satisfied. The second constraint is
satisfied because a statement iteration can only depend on a previous iteration in
the execution order. For example, dataflow analysis identifies an edge from vertex
f to vertex b with mapping {( ; )} (the single iteration in the zero-dimensional it-
eration domain of f is mapped to the single iteration of b) for N = 1 and an edge
from vertex f to vertex e with mapping {( ; N − 1)} for N ≥ 2 (the single iter-
ation of f is mapped to iteration N − 1 of the one-dimensional iteration domain
of computation e). Finally, for each computation v that last wrote an element of
the output array (dataflow analysis determines which v), an edge is added from
the output computation to v, with as Me the reversed access relation of the write.
In our running example, M(g,f) = {( ; )} as a scalar of dimension 0 is written. Note
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that input computations do not have outgoing edges and the output computation
does not have incoming edges.

The concept of the equivalence of two dependence graphs is defined inductively
and follows the intuitive definition of the equivalence of two programs at the start
of this section.

Definition 2 (Equivalence of Computation Iterations). An iteration x1 ∈
Dv1 of a computation v1 ∈ V1 in a dataflow graph G1 is equivalent to an iteration
x2 ∈ Dv2 of a computation v2 ∈ V2 in a dataflow graph G2 if one of the following
conditions holds

– V1 and V2 are input computations with fv1 = fv2 and x1 = x2,
– fv1 = id and iteration MeG1 (x1,1)(x1) of v′1 with eG1(x1,1) = (v1, v

′
1) is equiv-

alent to iteration x2 of v2 (and similarly for fv2 = id), or
– (fv1 , rv1) = (fv2 , rv2 ) and for each p ∈ [1, rv1 ], iteration MeG1 (x1,p)(x1) of v′1

with eG1(x1,p) = (v1, v
′
1) is equivalent to iteration MeG2 (x2,p)(x2) of v′2 with

eG2(x2,p) = (v2, v
′
2).

Definition 3 (Equivalence of Dependence Graphs). Two dependence
graphs are equivalent if the iteration domains of their output computations are
identical and if all iterations of these output computations are equivalent.

3 Equivalence Checking

In order to prove equivalence of two dependence graphs we basically follow
Definition 2 and propagate from the output to the input what correspondences
between computation iterations we should prove. Once we hit computations with
zero out-degree (either input computations or symbolic constants), we propagate
back to the output what we have actually been able to prove. This two-way prop-
agation is different from the approaches in [1, 6, 20, 21], the authors of which
essentially only propagate information from output to input. There are several
reasons for this difference in approach. Firstly, the discrepancy between what has
to be proven and what is actually proven helps in debugging when the equiv-
alence proof fails; secondly, as will become clear, propagating both ways will
facilitate a better treatment of commutativity and recurrences.

The propagation from output to input constructs an equivalence tree. The
nodes in this equivalence tree are annotated with correspondences, that reflect
the correspondences that we intend to proof. During the reverse traversal of
the equivalence tree, the correspondences are updated to reflect what we have
actually been able to prove.

Definition 4 (Correspondence). Let Gi (i ∈ {1, 2}) be the dependency graph
of program Pi. A correspondence consists of a tuple (v1, v2, R

want, Rgot) with vi

a computation in Gi with domain Di, Rwant ⊆ D1 ×D2, and Rgot ⊆ D1 ×D2.

Rwant contains pairs of computation iterations for which we want to prove equiv-
alence Rgot is initially undefined and is later updated to the set of pairs of
computation iterations that we have actually proven to be equivalent.
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The initial equivalence tree consists of a single root node that models the
equivalence to be proven between the output arrays of both programs. For this
root, we have Rwant = {(i, i) | i ∈ D} with D the domain of the output compu-
tation (i.e., the domain of the output array). It expresses the intention to show
that both arrays are identical. Rgot is initially undefined; it is computed by up
propagation when the Rgot information of its children is available. The proof
is successful when Rwant = Rgot. Rwant \ Rgot shows for which elements of the
output array equivalence could not be proven.

In our running example, the output is scalar, hence Rwant = {( ; )}. It is
convenient to see more details in concrete examples, so instead of using (v1, v2,
Rwant, Rgot), we use 〈(lv1 , fv1)↔ (lv2 , fv2)〉 and keep Rwant and Rgot as separate
annotations. Hence, we represent the root as 〈Out↔ Out〉 (Figure 4).

The basic step in proving equivalence consists of propagation. We distinguish
between down (from root to leaves) and up (from leaves to root) propagation.

Down Propagation. Down propagation reduces the correspondence
(v1, v2, R

want, ) of a node n to a set of correspondences (u1, u2, R
want
c , ) in

which ui is the target of an outgoing edge of vi in the dependency graph Gi.
Each of these new correspondences annotates a child of node n. The dataflow
encoded in the dependency graphs is used to derive the Rwant

c relation of the
children. More precisely, for each pair of computations u1 and u2 with (v1, u1)
and (v2, u2) edges in the respective dependency graphs that refer to the same
argument position (same p value), we have a child annotated with the corre-
spondence (u1, u2, R

want
c , , ) where

Rwant
c =

(
M(v1,u1) ⊕M(v2,u2)

)
Rwant. (1)

The ⊕ operator combines mappings of type Dv1 → Du1 and Dv2 → Du2 into
one of type Dv1 ×Dv2 → Du1 ×Du2 :

{ (i1, i2; i′1, i
′
2) ∈ Z

(dv1+dv2)+(du1+du2) | (i1, i′1) ∈M(v1,u1) ∧ (i2, i′2) ∈M(v2,u2) }.
Recall, the domains of the dependence relations M of all edges for a given argu-
ment position partition the domain of a node. Hence, for each argument position,
Rwant is partitioned by the domains of the combined dependence relations, i.e.,
each element of Rwant is mapped to an element of the Rwant

c of exactly one child
corresponding to this argument position.

In our running example, the output computations have one outgoing edge,
hence one child is created. We obtain the child 〈(4, id/1) ↔ (10, id/1)〉 with
Rwant = {( ; )}; i.e., the copy operations in Line 4 of Program 1 and Line 10 of
Program 2 should compute the same value. Each of these computations has two
outgoing edges, but the constraints N = 1 and N ≥ 2 are pairwise incompatible,
so two of the four children have Rwant = ∅. Of the two other children, one is
constrained with N = 1 and the other with N ≥ 2. The correspondence of the
latter, 〈(3, +/2)↔ (9, +/2)〉, has Rwant = {(N − 1; N − 1) | N ≥ 2} expressing
that the addition on Line 3 of Program 1 and the addition on Line 9 of Program
2 should compute the same value in iteration N − 1 (when N ≥ 2).
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a : 〈Out ↔ Out〉
��

b : 〈(4, id) ↔ (10, id)〉
N=1



� � � � � � � �
N≥2

��
. . . l : 〈(3, +) ↔ (9, +)〉 Rwant

l ={(i;i)|1≤i≤N−1}=R
got
l



� � � � � � � �
i=2α��

i=2α+1
�������������

. . . q : 〈(3, g) ↔ (5, g)〉


�����������

s : 〈(3, g) ↔ (7, g)〉


�����������

��
r : 〈(3, +) ↔ (9, +)〉

Rwant
r ={(i;i)|∃α:i=2α+1∧1≤i≤N−2}

⊆Rwant
l

t : 〈(1, id) ↔ (1, id)〉
��

v : 〈(3, +) ↔ (9, +)〉
Rwant

v ={(i;i)|∃α:i=2α∧2≤i≤N−2}
⊆Rwant

lu : 〈In ↔ In〉
Rgot

u =Rwant
u ={(0;0)|N≥2}

Fig. 4. Final state of part of the equivalence tree of the programs in Figure 1

In principle, this down propagation proceeds until correspondences are
reached that cannot be further propagated. This holds when (i) Rwant = ∅,
in which case we can set Rgot = ∅. (ii) Rwant is a relation between input com-
putations referring to the same input array: we can set Rgot = Rwant ∩ Id with
Id the identity relation, i.e., the tuples in Rwant between identical elements of
the input arrays are proven, the others cannot be proven. (iii) The functions
(fvi with arity rvi) of both computations are different; this includes the case of
input computations referring to distinct input arrays. As we consider functions
as black boxes, we cannot prove equivalences between different functions and we
set Rgot = ∅.

Up propagation. Once the Rgot relations are obtained for all children of an equiv-
alence node, up propagation can compute the Rgot relation for that node. First,
consider a single argument position. As we mentioned above, down propagation
distributed the Rwant relation of n over the Rwant relation of the children of n
that refer to the same argument position. Hence up propagation should take the
union of the different parts. However, to prove an equivalence, it has to be proven
for each of the r argument positions, so the results obtained for the different argu-
ment positions must be intersected. More formally, let (v1, v2, R

want, Rgot) anno-
tate node n and let Sj = {((v1, u1), (v2, u2)) | p(v1,u1) = j∧p(v2,u2) = j}. Finally,
let (u1, u2, R

want
(u1,u2)

, Rgot
(u1,u2)

) annotate the child of n with ((v1, u1), (v2, u2)) ∈ Sj .
Then, Rgot is updated to

⋂

j∈[1..r]

⋃

((v1,u1),(v2,u2))∈Sj

(M−1
(v1,u1)

⊕M−1
(v2,u2)

)Rgot
(u1,u2)

(2)

Algebraic operations. Associative operators can be nested differently in the two
programs. A direct application of our technique would result in invalid pairings of



Equivalence Checking of Static Affine Programs 607

argument positions and a failure of the proof. To solve this problem, we basically
follow [21] and apply a preprocessing step to “flatten” associative operators
in the dependency graph and reorganize the graph so that the functionality
of the program is preserved. For example, a nesting of two binary associative
operators introduces a ternary operator (possibly for only part of the domain
of the outer node). Intuitively, an expression +(a, +(b, c)) with a nesting of two
binary operators is replaced by the ternary expression +(a, b, c).

Commutative operators pose more severe problems. For example, when prop-
agating 〈(3, +/2)↔ (9, +/2)〉 (correspondence l in Figure 4) as described above,
the first argument of the first computation is paired with the first argument of
the second computation, and also the second arguments are paired. When the
operator is commutative as it is the case here, this does not suffice. The solution
proposed in [21] (without implementation) is to consider all permutations of the
arguments of the second computation separately and to use a look ahead mecha-
nism to figure out which permutation is correct. However, this too is insufficient.
Assume the above correspondence has Rwant = {(i; i) | 1 ≤ i ≤ N − 1}. (This is
not the initial value, but the recurrence handling described below updates it to
this value.) Neither of the two possible permutations is correct on its own. One
only holds for the even values of i (i = 2α) and the other only for odd values of
i (i = 2α + 1); the proof attempt of [21] gets stuck.

Our approach is to try all permutations when the operator is commutative,
and to extend the up propagation step so that it collects the results from the
different permutations. Formally, let Π the set of permutations over [1, . . . , r].
With π a permutation in Π , the set Sj used in Equation 2 is redefined as Sj =
{((v1, u1), (v2, u2)) | p(v1,u1) = j ∧ p(v2,u2) = π(j)}. Then, with other symbols
retaining the same meaning as in Equation 2, Rgot is now computed as

⋃

π∈Π

⋂

j∈[1..r]

⋃

((v1,u1),(v2,u2))∈Sj

(M−1
(v1,u1)

⊕M−1
(v2,u2)

)Rgot
(u1,u2) (3)

(Definition 2 requires a similar change.)
In our running example, the +/2 computation of Program 1 (node e of

Figure 2) has one outgoing edge for each argument, while node g in the model
of Program 2 has 2 outgoing edges for each, yielding 8 possible combinations.
However combinations leading to nodes where one computation has operator f
and the other computation has operator g result in 4 children with Rwant =
Rgot = ∅. The other cases result in 4 children that contribute to the proof,
namely 〈(3, f/1) ↔ (4, f/1)〉 and 〈(3, g/1) ↔ (5, g/1)〉 with constraint i = 2α,
and 〈(3, f/1)↔ (8, f/1)〉 and 〈(3, g/1)↔ (7, g/1)〉 with i = 2α+1. Two of them
are shown as children of node l in Figure 4. Once Rgot is available in each of
these children, up propagation can update Rgot in this node l.

Recurrences: Induction, Widening and Narrowing. A given pair of computa-
tions may depend on itself, requiring special care. Termination is ensured when
branches of the equivalence tree are finite and calculations in nodes are finite.
The former will be ensured by allowing at most two occurrences of the same
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computation pair in a branch (the number of different pairs is finite); the latter
by recomputing the Rwant and Rgot values in nodes only a finite number of times.

A pair (v1, v2) can only reappear in a branch when both dependency graphs
have a cycle that passes through respectively v1 and v2, i.e., both programs have
a recurrence. When a pair actually reappears, it means that both programs have
performed the same computation since the first appearance of the pair. In the
equivalence tree of our running example (Figure 4), nodes l and r (as well as l and
v) form such a pair. Initially (node l) one wants to show that both computations
are equivalent for the iteration pair (N − 1; N − 1); down propagation creates
nodes q, r, s, and v. In nodes r and v, the same equivalence has to be proven for
the iteration pair (N−2; N−2) (for respectively odd and even N). While in our
running example, both programs have computed one iteration, the relationship
can be more complex. For example, when one program is derived from the other
by loop unrolling, the original one needs several iterations to perform the same
computation as the transformed program does in one iteration.

More formally, let node a, annotated with (v1, v2, R
want
a , Rgot

a ) (with Rgot
a

undefined), be the first occurrence (the “ancestor”) of the pair of computa-
tions (v1, v2) on a branch of an equivalence tree. Let node d annotated with
(v1, v2, R

want
d , Rgot

d ) be the second occurrence (the “descendant”). If Rwant
d ⊆

Rwant
a , we can simply perform induction, setting Rgot

d = Rwant
d . When up-

propagation reaches node a, we will of course need to validate our induction
hypothesis. This will be discussed below. If Rwant

d �⊆ Rwant
a , then we want to

extend the induction hypothesis Rwant
a to include Rwant

d so that we can perform
induction also in this case. However, we cannot simply set the new Rwant

a to
the union of the old Rwant

a and Rwant
d , as this effectively corresponds to loop

unrolling. This process would not terminate when the number of iterations is
bounded by a symbolic constant (as in our running example) and would not
scale when the bound is known.

Instead, we draw inspiration from the widening/narrowing technique of ab-
stract interpretation [8] and apply a widening operator∇. Such a widening oper-
ator turns a possibly infinite ascending chain, e.g., taking the union with Rwant

d in
each step as described above, into an eventually stationary chain. As our widening
operator, we will essentially use the integer affine hull. However, as the induction
hypothesis Rwant

a needs to be a subset of D1×D2, with Di the domain of vi, we will
intersect the affine hull with the aforementioned set. In the first iteration, Rwant

a is
then set to the intersection of D1×D2 with some affine subspace. Any additional
widening step is only performed when Rwant

d includes an element not in Rwant
a (but

still in D1 × D2) and the widening operator will then increase the dimension of
the affine subspace. So, after a finite number of widening steps, Rwant

a = D1×D2,
ensuring termination. At termination, we will have Rwant

d ⊆ Rwant
a . The affine

hull not only ensures termination of the widening sequence, it is also a reasonable
heuristic as an affine program will only remain affine if it is transformed using a
(piecewise) affine transformation.

In our running example, the ancestor (node l) is created with Rwant
l = {(N −

1; N−1)}. Down propagation creates node r (or v, depending on the parity of N)
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and computes Rwant
r = {(N −2; N−2)}. This is not part of the initial induction

hypothesis and so we need to revise the induction hypothesis. The affine hull of
{(N − 1; N − 1)} and {(N − 2; N − 2)} is {(i; i)} and intersection with D1 ×D2

yields the induction hypothesis shown in Figure 4.
As mentioned before, when up-propagation returns to a, we need to check

whether the induction steps that have been made are valid. This is the case
if Rwant

d ⊆ Rgot
a for each descendant d, i.e., when ∪d∈DRwant

d ⊆ Rgot
a with D

the set of descendants for the computation pair (v1, v2). Note that there is no
risk of circular reasoning (“unfounded sets”) due to the second constraint of
Definition 1: No individual iteration can (indirectly) depend on itself, hence no
pair of individual iterations can depend on itself.

If Rgot
a does not include Rwant

d , then the performed induction is not founded
by what we actually can prove. This means that Rwant

a , the current hypothesis
is an over-approximation of the correct induction hypothesis, or at least of the
induction hypothesis that we are able to prove. In a second phase, we can then
try to take successive subsets of Rwant

a . However, as in the first phase, we need to
be careful not to end up in a possibly infinite sequence. As in abstract interpre-
tation, we therefore perform a (finite) number of narrowing steps. Our narrowing
operator is fairly simply. The first time it is applied, we set Rwant

a = ∪d∈DRwant
d

with D the set of descendants that have used the induction hypothesis. Then,
in the descendants, we perform induction, setting Rgot

d = Rwant
d ∩Rwant

a . In par-
ticular, we do not allow any more widening steps on a once we have entered the
narrowing phase. If the resulting Rgot

a still does not include some Rwant
d , then

the second time we apply the narrowing operator, we simply set Rwant
a = ∅.

The handling of recurrences can be summarized by the following algorithm. It
uses a flag f to remember the status of the ancestor node. The flag is initialized
to undef when a node is created by down propagation.

– If down propagation creates a node d, with (v1, v2, R
want
d , Rgot

d , undef ), and
there exists an ancestor node a with (v1, v2, R

want
a , Rgot

a , fa) then
• if fa = undef , then set fa = widening (to indicate that a is the root of

a recurrence);
• if fa = widening and ¬(Rwant

d ⊆ Rwant
a ) then Rwant

a ← Rwant
a ∇Rwant

d

(widening step) and remove all descendants of node a.
• else Rgot

d = Rwant
d ∩Rwant

a (induction step, it will be checked later whether
it was valid).

– If up propagation computes Rgot
a for a node a, with (v1, v2, R

want
a , Rgot

a , fa),
and the node has a set D of descendant nodes with each node d ∈ D anno-
tated with (v1, v2, R

want
d , Rgot

d , fd) then
• if ∪d∈DRwant

d ⊂ Rgot
a then done (the induction steps turn out to be valid

and Rgot
a can be used to perform up propagation on the parent of a)

• else if fa = widening and ¬(∪d∈DRwant
d ⊆ Rgot

a ) then fa = narrowing ,
Rwant

a = ∪d∈DRwant
d , and Rgot

a = undef (narrowing step) and remove all
descendants of node a

• else (fa = narrowing) Rgot
a = ∅ (no correct hypotheses found)
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Proposition 1. The equivalence checking algorithm terminates and for each
node in the equivalence tree (including the root node) with correspondence
(v1, v2, R

want, Rgot), if (x1, x2) ∈ Rgot then iteration x1 of v1 is equivalent to
iteration x2 of v2.

Our recurrence handling differs substantially from [21]. The program model used
in that work makes it non trivial to find the ancestor/descendant pair over which
both programs have performed the same computation. They need an unfolding
operation to identify the pair, then they compute the across dependency mapping
that corresponds to the computation performed between ancestor and descen-
dant and use that mapping in a complex operation that involves the calculation
of the transitive closure (implemented in the Omega library [13]) that yields the
equivalences to be proven for the edges leaving the recurrence. This computation
requires the recurrences to be uniform while our method can also handle non
uniform recurrences. Furthermore, their representation of proof obligations only
allows an element of an output array to depend on a single element of another
array along any path in the program. In particular, if a program contains a
loop with body A[i] = A[i-1] + B[i], then they are unable to express that
A[N] depends on B[i] for all iterations i of the loop. After stepping over the
recurrence, they will therefore ignore all but one of these elements B[i].

Tabling. A dependency graph is not necessarily a tree. This means that two
computations may have some common subcomputation. Tabling can therefore
be used to reuse already proven equivalences. A very simple table could store
proven tuples (v1, v2, R

got
t ). When an equivalence has to be proven for the pair

of computations (v1, v2), one needs only to prove it for Rwant \ Rgot
t . The same

table can also be used to detect recurrences.

4 Implementation

The proof procedure of Section 3 has been implemented as part of our
C++ isa (http://www.kotnet.org/~skimo/loop/isa-0.08.tar.bz2) proto-
type tool set. This set contains a polyhedral extractor from C based on SUIF [3]
and an exact dependence analysis tool. We use our own C isl library, based
on piplib [11], to manipulate sets of integers defined by linear inequalities and
integer divisions. We avoid the Omega library [13] as it suffers from some unim-
plemented corner cases. Each set/relation is represented by a union of “basic
sets”, each of which is defined by a conjunction of linear inequalities. If a re-
quested relation Rwant is a union of basic sets, a node is created for each of its
basic sets. All nodes with the same pair of computations are kept in a list acces-
sible through a hash table keyed on the given pair, which is used both for tabling
and detecting recurrences. The implemented algorithm differs slightly from the
exposition above. In particular, we never remove any node from the equivalence
tree or restart a proof, but instead extend the tree while keeping track of all
the induction hypotheses that have been made. It also contains various other

http://www.kotnet.org/~skimo/loop/isa-0.08.tar.bz2
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A[0] = in;
for (i = 1; i <= N; ++i)

A[i] = f(g(A[i/2]));
out = g(A[N]);

A[0] = g(in);
for (i = 1; i <= N; ++i)

A[i] = g(f(A[i/2]));
out = A[N];

Fig. 5. A pair of equivalent programs with a non-uniform recurrence

optimizations to avoid redundant computations and it supports multiple output
arrays.

It is difficult to compare running times with the most closely related tool
of [20] since the latter is not available to us and since the reported running times
do not mention the CPU type. Furthermore, our isl library is relatively new and
uses exact integer arithmetic, while the tool of [20] uses the more mature and
presumably heavily optimized Omega library, which has only machine integer
precision. As an indication, however, for the example in Figure 1, our tool takes
about 0.04s on an Intel Core2@3GHz, 0.04s for the example of Figure 5 with a
non-uniform recurrence and 0.02s for the example from [21], while for the USVD
example pair from [20], with several hundred lines of code, the tool takes about
0.5s, most of which is spent reading in intermediate data structures. This kernel
is often used in embedded systems and is the most complicated case study of [20].

For a more extensive experiment, we turned to the code generation tool
CLooG [7], which previously used PolyLib to perform its iteration domain ma-
nipulations, but was recently extended to optionally use our own isl instead.
Due to various differences in the internals of these tools, the outputs for CLooG’s
regression tests may not be textually identical, and we therefore want to verify
that they are equivalent. Since the original statements are not available for these
tests, we instead verify that the iterations of all statements are performed in the
same order in both versions by passing around a token. Since each statement
now writes to the same scalar, these tests constitute true stress tests for both
the dependence analysis and the equivalence checking. In particular, using the
original statements would result in a much easier equivalence checking problem.
Of 105 tests, 97 were proven to be equivalent. Five contained a construct in the
output that we currently cannot parse, while three produced memory overflows
(1 during dependence analysis and 2 during equivalence checking). These over-
flows are probably due to the presence of a large number of integer divisions. The
size of the 97 pairs of checked programs ranges from 2 to 800 lines (9478 lines in
total), with running times up to 22 seconds (most are well below 1 second) and
62 seconds in total. The number of widening steps performed ranges from 0 to
228, with a grand total of 1018 widening steps.

5 Discussion and Conclusion

Unlike transitive closure based approaches [6, 21], our widening approach does not
require uniform recurrences. Note that standard uniformization techniques [15]
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would only introduce an extra (easy) transitive closure, without resolving the orig-
inal difficult transitive closure. However, our method will not be able to detect
all kinds of equivalences, as the widening assumes that a piecewise affine trans-
formation has been applied to the recurrences. The widening step may in rare
cases also perform an inappropriate generalization, from which it will then be dif-
ficult to recover. In particular, this may occur in the presence of integer divisions
more intricate than those in Figure 5. We are investigating if delaying the widen-
ing by one step or the use of more advanced widening or narrowing operators can
solve these problems. The flattening of nested associative operators during pre-
processing cannot handle reductions with a variable number of arguments such
as in

∑
0≤i<N a[i]. Proving the equivalence of different ways of computing such

reductions requires a further extension of our system.
Some forms of data-dependent or non-affine constructs can be handled by

applying an if-conversion preprocessing [2] and/or using fuzzy [5] instead of
exact dataflow analysis. Many other approaches exist to equivalence checking,
including translation validation, e.g., [19], or fractal symbolic analysis [16]. Some
of these approaches handle more general transformations than ours, but they
typically rely on compiler hints or heuristics. SMT solvers such as CVC3 [4], used
by many approaches, do not perform inductions. General theorem provers such
as ACL2 [12] can perform induction, but even for the simple case of Figure 1 an
encoding of the equivalence problem by an expert required a manual specification
of the induction hypothesis, while we perform induction fully automatically.
See [20] for a more detailed comparison to related work.

Another way of looking at our work is that we discover invariants between ar-
ray indices of two programs. Tuples satisfying the invariant identify equal array
elements. While the discovery is guided by the assumed invariant between pro-
gram outputs, non trivial new invariants are induced when handling recurrences.
Induction of variants —between scalars— is an active research area, e.g., [18].

We conclude that our method is the first static affine program equivalence
checker that handles non-uniform recurrences with full support for commutativ-
ity and a publicly available implementation.
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