
Reducing Context-Bounded Concurrent

Reachability to Sequential Reachability�

Salvatore La Torre1, P. Madhusudan2, and Gennaro Parlato1,2

1 Università degli Studi di Salerno, Italy
2 University of Illinois at Urbana-Champaign, USA

Abstract. We give a translation from concurrent programs to sequential
programs that reduces the context-bounded reachability problem in the
concurrent program to a reachability problem in the sequential one. The
translation has two salient features: (a) the sequential program tracks, at
any time, the local state of only one thread (though it does track multiple
copies of shared variables), and (b) all reachable states of the sequential
program correspond to reachable states of the concurrent program.

We also implement our transformation in the setting of concurrent
recursive programs with finite data domains, and show that the result-
ing sequential program can be model-checked efficiently using existing
recursive sequential program reachability tools.

1 Introduction

Analysis of concurrent programs is an important problem that is difficult for a
variety of reasons. The explosion in the number of interleavings between threads
is one problem, and the explosion in the state-space needed to keep track of the
combined states of each thread is another. For instance, even checking reachabil-
ity of n parallel systems, each modeled as a finite-state transition system (with
some form of communication) is solvable only in time exponential in n, as there
are exponentially many global configurations which are feasible.

In this paper, we consider the problem of translating concurrent programs
to sequential programs, which reduces the reachability problem for the former
to that for the latter. The motivation behind such a translation is to use the
fairly sophisticated sequential analysis tools to analyze concurrent programs.
For instance, this has been proposed in this same volume by Lahiri, Qadeer,
and Rakamarić [5], in order to apply deductive verification tools based on SMT
solvers to verify concurrent C programs.

A translation of the above kind is of course always possible— given a con-
current program, we can build a sequential program that simply simulates its
(global) behavior. However, such a sequential interpreter would track the entire
global state of the concurrent program, which involves keeping the local state of
each thread. Our aim is to provide a translation that avoids this extreme blow-up
� This work was partially funded by NSF CAREER Award CCF 0747041, by the

MIUR grants ex-60% 2007-2008, and FARB 2009 Università degli Studi di Salerno
(Italy).

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 477–492, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

478 S. La Torre, P. Madhusudan, and G. Parlato

in state-space, and build a sequential program that tracks, at any point, the local
state of only one thread of the concurrent program. However, such a translation
is not always feasible.

A restricted reachability for concurrent programs has emerged in the last few
years, mainly motivated from testing concurrent programs and model-checking
finite-state models of them, called context-bounded reachability, wherein we ask
whether an error state is reachable within k context-switches, for a fixed k. This
was first suggested by Qadeer and Wu [11], and has several appealing features.

First, it has been argued that bounded context-switching is a natural restric-
tion as most concurrency related errors manifest themselves within a few context-
switches. Musuvathi and Qadeer have, for example, experimentally shown that
a few context-switches explores a vast space of reachable configurations [9].

Second, when we deal with concurrent programs where variables range over
finite domains (obtained either by restricting the domain or using some form
of abstraction such as predicate abstraction), we obtain essentially concurrent
pushdown systems, which have an undecidable reachability problem. However,
it turns out, mainly due to results of [10], that the bounded context-switching
reachability problem is decidable.

Finally, and perhaps most importantly, when one examines why context-
bounded reachability is decidable for concurrent programs over finite data do-
mains, the primary reason is that we can compositionally analyze the program,
examining each thread separately and combining the results. This compositional
reasoning hence involves searching a state-space where at any point only the
local state of a single thread is tracked.

In [6], Lal and Reps propose a transformation of concurrent programs to
sequential programs that reduces context-bounded reachability in the former
to reachability in the latter. This translation exploits compositional arguments
underlying the decidability proofs to construct a sequential program that tracks,
at any point, the local state of one thread, the shared state, as well as k copies of
the shared state (corresponding to the shared state at the k context-switches).
This translation is appealing when the local state is complex (in particular, when
the local state has a stack to model recursive control), and the shared state is
comparably less complex.

The translation proposed by Lal and Reps, however, does not permit a lazy
analysis: the sequential program guesses in advance the valuations of shared vari-
ables g1, . . . , gk at the context-switches, and verifies each thread locally against
this guess. Hence, the sequential program unnecessarily explores unreachable
states of the concurrent program (as the guessed gi’s may not be reachable).

In our opinion, a transformation that results in a lazy analysis (one which ex-
plores only reachable states) is highly desirable; for example, in model-checking,
it can drastically reduce the size of the state-space that needs to be explored. In
fact, Lal and Reps [6] do give direct lazy analysis algorithms for finite-state pro-
grams, and our recent work in [4] also provides a direct fixed-point algorithm for
lazy analysis. However, a transformation from concurrent programs to sequential
programs that preserves laziness was not known.

Reducing Context-Bounded Concurrent Reachability 479

Contributions. In this paper, we show a lazy translation: given a concurrent
program and a bound k, we show how it can be transformed to a sequential pro-
gram, such that reachability within k context-switches in the concurrent program
reduces to reachability in the sequential one. Moreover, the salient feature of the
translation is that the reachable states of the sequential program correspond to
reachable states of the concurrent program, and hence is, in our opinion, a more
faithful representation of the sequential program. The main idea behind our
reduction is to have the sequential program calling individual threads multiple
times from scratch in order to recompute the local states at context-switches.

We also implement an eager translation and our lazy translation for concurrent
programs over finite data-domains (a.k.a. concurrent Boolean programs). This
results in sequential programs over a finite data-domain, which can be model-
checked using existing tools. Our implementations of the translations are avail-
able online1. We show that our laziness-preserving transformation outperforms
eager transformations on a class of multithreaded Bluetooth driver examples
(the original programs and the transformed ones are also available online).

The paper is organized as follows: Section 2 gives a high-level and intuitive
description of our eager and lazy translations; Section 3 formally defines the class
of sequential and concurrent programs; Section 4 describes the eager translation
(which is mainly adapted from ideas in [6]); the laziness-preserving translation is
presented in Section 5; Section 6 reports on our implementation and experiments
for Boolean programs; and Section 7 concludes with some future directions.

Related Work. Bounded context-switching reachability was introduced in [11]:
the KISS project implemented reachability within two context-switches and
found data-race errors in device drivers; interestingly, it also reduced the problem
to sequential reachability (the reduction is simple for two switches). Decidabil-
ity of context-bounded analysis for concurrent recursive Boolean programs was
established in [10] using automata theoretic methods. There have been a num-
ber of analysis algorithms and implementations of context-bounded reachability
problems: [13] implement the automata-theoretic solution symbolically, [6] pro-
pose an algorithm to compute the reachable states lazily, and the work in [4]
implements symbolic fixed-point based solutions for lazy reachability. Bounded
context-switching has also been exploited in other contexts: the tool CHESS [8]
explores bounded context-switching interleavings to test concurrent programs,
and bounded context-switching for systems with heaps [1], systems communi-
cating using queues [3], and weighted pushdown systems [7] have been proposed.

Bounded context-switches vs bounded rounds. Lal and Reps [6], apart from giving
a transformation for eager analysis, also make a technical improvement: by using
only k extra sets of shared variables, we can explore all the state space reachable
in k round-robin rounds (which is larger than that reached in k context-switches).

In both our transformations, we have considered bounded context-switching
reachability, and not bounded round-robin reachability (this is why our eager
transformation is slightly different from that of [6]). The reason is that we see no
1 At http://www.cs.uiuc.edu/∼madhu/getafix/cbp2bp

480 S. La Torre, P. Madhusudan, and G. Parlato

efficient way of transforming programs using only O(k) sets of global variables
that effects a lazy-transformation. While we do know of such a translation, this
requires calling each thread too many times (exponentially) many times, which
we believe will not work well in practice. This translation is out of the scope of
this paper, and the problem of coming up with a more efficient translation for
bounded rounds reachability is an open problem.

2 From Concurrent to Sequential Programs

In this section, we briefly sketch two translation schemes from concurrent to
sequential programs which preserve reachability up to a fixed number of context-
switches. The transformations work for general programs (even when the domain
of variables is not bounded), except that they assume that the state of shared
variables is known, and can be replicated and compared against each other.

Of course, there is a simple translation of concurrent programs to sequential
programs that keeps the entire global configuration of the program. However,
our aim here is to build a sequential program that keeps only the local state
of a single thread at any time (though we allow some copies of shared states).
In particular, when applied to concurrent recursive programs over finite data-
domains, the translation will should yield a sequential recursive program over a
finite data-domain; this would reduce concurrent context-bounded reachability
on finite domains to reachability of sequential programs over finite domains,
which is a decidable problem.

We consider concurrent programs with a fixed number of threads that com-
municate with each other using shared variables. Each thread is a sequential
program (with possibly recursive procedures). A state is thus given by the val-
ues of the shared variables and the local state of each thread. A computation of
a concurrent program is a sequence of contexts, where in each context a single
thread has control.

T1
s0

g1 s1

g2
s4

g3 s5

T2
g1s2

g2s3
g3

s6

s7

For ease of presentation let us first consider the case of a
concurrent program with only two threads T1 and T2. Also,
instead of describing the transformation, we take one partic-
ular path in the concurrent program, and describe how the
corresponding sequential program will discover it.

Consider a sample computation whose control flow at the
thread level is shown on the right. It starts in a state s0 with
the control in T1, then at a state s1 switches the control to
T2 at state s2, then locally executes T2 till it reaches the
state s3, and then switches to T1 again at state s4, and so
on. In a simple sequential simulation of this computation,
while we execute instructions of T2, say from s2, we need to
remember the local component of thread T1 in state s1, in order to compute
the switch from s3 to s4. This can be very expensive. In the case of finite data
domains, where threads have recursive procedures and we would like to build a
sequential program also over a finite data domain, this is in fact impossible, as it

Reducing Context-Bounded Concurrent Reachability 481

involves keeping the unbounded call-stack of T1 at s1. Schemes for translation to
sequential programs hence need to explore this run in a different manner, where
only the local state of one process is kept at any given point.

The two translation schemes we present in the rest of this section do not
store the local states of more than one thread, but will store k valuations of
shared variables, which intuitively correspond to the value of shared variables
at context-switches. In the computation sketched above, if g is the set of shared
variables, we denote by g1 the value of the shared variables at the first context-
switch from T1 to T2, i.e., the value of shared variables at states s1 and s2.
Similarly, let g2 be the value at the next context-switch back to T1 (i.e., at
states s3 and s4), and g3 the value at the last context-switch back to T2 (i.e., at
states s5 and s6).

The eager and lazy translations differ in the way they compute the values of
these shared variables at the context-switches: the eager approach nondetermin-
istically guesses them right at the beginning, while the lazy approach computes
them dynamically.

The eager approach. In the eager approach, we guess the values g1, g2, g3 at
the beginning (non-deterministically). Then, we process thread T1 completely,
handling both segments of its run (s0 to s1 and s4 to s5), and then erase the
local state and proceed to process the two segments of thread T2 (s2 to s3 and
s6 to s7). Note that each thread is processed only once.

More precisely, after guessing g1, g2 and g3, we start to compute in T1 the first
context. At any point where the shared variables match the guessed value g1, we
allow a “jump” where the global variables are rewritten to g2, and we proceed
in T1 computing the third context, till we reach g3. Note that across the “jump”
above (from s1 to s4), the local state of thread T1 is preserved. Hence the call to
thread T1 verifies that there is a run which can reach shared-variable-state g1,
jump to g2, and proceed to reach g3.

Next, we erase the local state of T1 and proceed to process thread T2 from its
initial local states with the shared variables assigned with g1. We then continue
till we reach a state with shared-variable valuation g2, jump to g3 preserving
local state, and continue the computation of the fourth context in T2.

Intuitively, the guessed values g1, g2, g3 allow the stitching of the two execution
segments that have been executed in the two threads. However, since the tuple of
values of the shared variables is guessed, they may not correspond to reachable
states of the concurrent program, and hence may lead to exploring the individual
threads on unreachable regions of the state-space.

The lazy approach. In the lazy approach, we start computing T1 in the first
context from an initial global state. At any point of the execution, we can choose
nondeterministically to switch context, in which case we store the value of the
shared variables in g1 and terminate the thread (thereby losing its local state).

Then, we execute T2 in the second context, starting from a local initial state and
shared variables initialized with g1. At any point of the execution, we can choose
nondeterministically to switch context, in which case we store in g2 the value of
the shared variables and terminate the thread (again losing the local state).

482 S. La Torre, P. Madhusudan, and G. Parlato

We then would like to start executing T1 (i.e., from s4) in the third context,
but since we had lost its local state, we need to recompute it. Thus, starting
from an initial global state, we execute T1 until we reach a state matching g1 on
the shared variables. (Notice that this may be an entirely different local state
than the one we explored in the first context! However, as we show, this does
not affect correctness.)

At such a point, we allow the thread to replace the value of the shared vari-
ables with g2, and proceed to execute T1 to compute the third context (from s4 to
s5). Again, at any point, we can decide nondeterministically to switch context, in
which case we store the value of the shared variables in g3, and end thread T1.

Finally, we move to execute T2 in the fourth context. As we did for T1, we
need to restart thread T2 from its initial state to recompute the local state at
the beginning of the fourth context (i.e. at s3 or s6). Thus, we simulate T2 with
shared variables initialized to g1, wait for it to reach a state with shared variables
matching g2, non-deterministically choose to assign the global variables with g3,
and proceed to compute the fourth context (from s6 to s7). Again, the local state
produced on this new invocation of thread T2 may be entirely different, and yet
the states discovered in the fourth context are indeed reachable.

In contrast to the eager approach, the values of g1, g2, g3 are computed dy-
namically, and thus are guaranteed to be reachable by the concurrent program.
This can be sometimes a huge advantage as large (and complex) portions of the
state space are spared from analysis. More importantly, we believe that this is a
more faithful representation of the concurrent program. On the other hand, it is
true that this approach executes each context several times (at most k/2 times).

Generalization to multiple threads. Consider now a concurrent program
with n threads T1, . . . , Tn and a fixed integer k > 0. Let the variables gi (i =
1, . . . , k) hold the valuation of the shared variables at the i-th context-switch,
and let the variables ti (i = 0, . . . , k) hold the index of the thread that has
control in the (i + 1)-th context.

In the eager approach, we start guessing non-deterministically both tuples
g1, . . . , gk and t0, . . . , tk. Then, we run each thread Ti, for i = 1, . . . , n, through
all the contexts where it has the control (i.e., all contexts j such that tj = i) and
in doing this we check that the context-switches happen at states that match
the values of the shared variables in the tuple g1, . . . , gk.

In the lazy approach, the thread scheduling t0, . . . , tk is determined non-
deterministically as and when the context-switches happen, and each gi is com-
puted by executing the thread Tj which has the control in the context i (i.e., such
that j = ti) through all the contexts in which it had control up until context i. As
in the previous approach, when re-executing the thread in the previously com-
puted contexts, we check that the context-switches happen at states that match
the values of the shared variables in the already computed tuple g1, . . . , gi−1.

3 Concurrent Programs

Sequential recursive programs. Let us fix the syntax of a simple sequential
programming language with variables ranging over only the integer and Boolean

Reducing Context-Bounded Concurrent Reachability 483

domains, and with explicit syntax for nondeterminism, (recursive) function calls,
and tuples of return values.

The transformations in this paper require that we can cache the shared vari-
ables, and copy and compare them, and the notation is far simpler when we
do not have complex or dynamically allocated structures. Handling domains of
types other than integers is straightforward, but we will stick to integers for
simplicity.

Programs are described by the following grammar:

〈pgm〉 ::= 〈gvar-decl〉; 〈proc-list〉
〈gvar-decl〉 ::= decl int x | decl bool x | 〈gvar-decl〉; 〈gvar-decl〉
〈proc-list〉 ::= 〈proc〉 〈proc-list〉 | 〈proc〉
〈proc〉 ::= fh,m (x1, . . . , xh) begin 〈lvar-decl〉; 〈stmt〉 end
〈lvar-decl〉 ::= decl int x | decl bool x | 〈lvar-decl〉; 〈lvar-decl〉
〈stmt〉 ::= 〈stmt〉; 〈stmt〉 | skip | 〈assign〉 | assume(〈b-expr〉)|

call fh,0(x1, . . . , xh) | return x1, . . . , xm |
if (〈b-expr〉) then 〈stmt〉 else 〈stmt〉 fi |
while (〈b-expr〉) do 〈stmt〉 od

〈assign〉 ::= x1, . . . , xm := 〈expr〉1, . . . , 〈expr〉m |
x1, . . . , xm := fh,m(y1, . . . , yh)

〈expr〉 ::= x | c | 〈b-expr〉
〈b-expr〉 ::= T | F | ∗ | x | ¬〈b-expr〉 | 〈b-expr〉 ∨ 〈b-expr〉

In the above, x, xi, yi are from a set of variable names Var , c is any integer
constant, and fh,m denotes a function with h formal parameters and m return
values. Some of the functions fh,m may be interpreted to have existing function-
ality, such as integer addition or library functions, in which case their code is
not given and we assume they happen atomically.

A program has a global variable declaration followed by a list of functions.
Each function is a declaration of local variables followed by a sequence of state-
ments, where statements can be tuple assignments, calls to functions (call-by-
value) that take in multiple parameters and return multiple values, conditional
statements, while-loops, or return statements. Expressions can be integer con-
stants, variables or Boolean expressions. Boolean expressions can be true, false,
or non-deterministically true or false (∗), and can be combined using standard
Boolean operations. Functions that do not return any values are called using the
call statement. We also assume that the program type-checks with respect to
the integer and Boolean types.

We will assume several obvious restrictions on the above syntax: global vari-
ables and local variables are assumed to be disjoint; formal parameters are local
variables; the body of a function fh,m has only variables that are either globally
declared, locally declared, or a formal parameter; a return statement in the body
of fh,m is of the form return x1, . . . , xm or simply return (in the latter case
arbitrary values will be returned).

Let us also assume that there is a function main, which is the function where
the program starts, and that there are no calls to this function in the code of P .

484 S. La Torre, P. Madhusudan, and G. Parlato

The semantics is the obvious one: a configuration of a program consists of a
stack which stores the history of positions at which calls were made, along with
valuations for local variables, and the top of the stack contains the local and
global valuations, and a pointer to the current statement being executed.

The reachability problem asks whether a particular statement in the program
marked using a special label Target is reachable.

Concurrent programs. A concurrent program is a finite set of recursive pro-
grams running in parallel and sharing some (global) variables.

Formally, the syntax of concurrent programs is defined by extending the syn-
tax of sequential recursive programs with the following rules:

〈conc-pgm〉 ::= 〈svar-decl〉; 〈init〉 〈pgm-list〉
〈svar-decl〉 ::= decl int x | decl bool x | 〈svar-decl〉; 〈svar-decl〉
〈init〉 ::= 〈proc〉
〈pgm-list〉 ::= 〈pgm〉 〈pgm-list〉 | 〈pgm〉

Let P be a concurrent program formed by the sequential programs P1, . . . , Pn

(where n > 0). Each program Pi has its own global and local variables, and also
has access to variables that are shared with the other component programs. Let
us assume that each concurrent program has a function init where the shared
variables are initialized (corresponding to the init construct in the above ab-
stract syntax). Let us further assume that the function main of each component
program Pi is named threadi.

The behavioral semantics of P is obtained by interleaving the behaviors of
P1, . . . , Pn. At the beginning of any computation the shared variables are set
according to function init. At any point of a computation, only one of the
programs is active. Therefore, a state of P is denoted by a tuple (i, uS , u1, . . . , un)
where Pi is the currently active program, uS is a valuation of the shared variables
and uj is a state of Pj for j = 1, . . . , n. From such a state the computation of
P can evolve either according to the local behavior of Pi or by switching to
another program Pj , which then becomes the new active program. A maximal
consecutive part of a computation visiting only states where the same program
Pi is active is called a context.

The reachability problem for concurrent programs asks whether a particular
statement in the program marked using a special label Target is reachable. The
reachability problem for concurrent programs under a context-switch bound k, for
k ≥ 1, asks whether Target is reachable within k context-switches.

Example 1. Figure 1 illustrates a simple concurrent program with two compo-
nent programs starting at thread1 and thread2 respectively, and five shared
variables test , x1, . . . , x4, all over the Boolean domain. Function init assigns
the initial value to the shared variable test and leaves all the others unassigned.
Function thread1 simply assigns all variables x1, . . . , x4 to false, and then sets
test to true. Function thread2 halts if test is false. Otherwise, it will loop forever
by nondeterministically choosing either to swap x1 and x2, or to shift the bits
x1, . . . , x4 circularly. The instruction labeled with Target is never reached on

Reducing Context-Bounded Concurrent Reachability 485

decl bool test ,x1, x2, x3, x4;

void init() begin
test := F;

return;

end

void thread1() begin
x1, x2, x3, x4 := F, F, F, F;

test := T;

return;
end

void thread2() begin
assume(test);
while(T) do

if (*) then

x1, x2, x3, x4 := x2, x1, x4, x3;

else

x1, x2, x3, x4 := x2, x3, x4, x1;

fi

od

Target : skip;
return;

end

Fig. 1. The concurrent program permutation

any computation. thread2 eventually computes (on various runs) all the per-
mutations of the bits stored in x1, . . . , x4. Note that, since these variables are
set to false by thread1, the reachable state-space at the while-loop has only the
valuation 〈x1 = F, x2 = F, x3 = F, x4 = F 〉. ��

4 Translation Scheme: The Eager Approach

In this section, we give a detailed description of the translation of a concurrent
program P with target program counter pc under a context-switching bound k
to a sequential program using the eager approach (denoted Eagerk(P ,pc)), and
argue its correctness.

Besides the variables in P, the sequential program Eagerk(P,pc) will have
extra global variable tuples g1, . . . , gk and t0, . . . , tk, as described in Section 2.
We add also the following control variables: a variable t to keep the index of the
active component program, a variable cx to keep the current context number, a
Boolean variable terminate to interrupt the execution of a program component,
and a Boolean variable goal which gets set to true when the target pc of P is
reached.

The sequential program Eagerk(P ,pc) is composed of: two new functions main
and contextSwitch that are shown in Figure 2, and for every function P of P , a
function P e which is a transformation of P .

In Figure 2, we use nextContext(cx, t, t0, . . . , tk) to denote a function that
computes the index of the first context in which Pt is active after cx, if any, and
k + 1, otherwise. Formally, nextContext(cx, t, t0, . . . , tk) is the value i such that
either ti = t and tj 	= t for all j s.t. cx < j < i, or i = k + 1 and tj 	= t for all
j > cx. Clearly, such an index can be computed with a few lines of code. We also
use firstContext(t, t0, . . . , tk) to compute the first context in which Pt is active
in the computation.

486 S. La Torre, P. Madhusudan, and G. Parlato

Let g: shared variables of P; Let g1, . . . , gk be k copies of g;
decl int cx, t, t0, . . . , tk; decl bool goal , terminate;

void main()

begin

goal := F;

assume(
∧k

i=0 (0 < ti ≤ n));
for(i := 1; i ≤ n; i + +) do

t := i;
cx := firstContext (t, t0, . . . , tk);
if (cx ≤ k) then

if (cx = 0) then init();

else g := gcx; fi

terminate := F;

call threade
tcx

();
fi

od

assume(goal);
Target: skip;

return;

end

void contextSwitch()
begin

if (cx = k) then

terminate := T;

else

assume(g = gcx+1);

cx := nextContext (cx, t, t0, . . . , tk);
if (cx ≤ k) then g := gcx;

else terminate := T; fi

fi

return;

end

Fig. 2. Functions main and contextSwitch of the program Eagerk(P ,pc)

if (terminate) then return;

else

if (∗) then call contextSwitch(); fi

if (terminate) then return; fi

fi

Fig. 3. Control code

Each function P e is obtained
from the corresponding function
P of P by a simple transforma-
tion. We first interleave the
statements of P with the lines of
control code C shown in Figure 3.
More precisely, we rewrite the
statements of P according to the following rules (E is an arbitrary Boolean ex-
pression, S1 and S2 are arbitrary statements, and S is a basic statement of the
kind assign or skip or assume or call):

– τ [S1;S2] = τ [S1]; τ [S2]
– τ [S] = S; C
– τ [return x1, . . . , xm] = return x1, . . . , xm

– τ [while (E) do S1 od] = while (E) do C; τ [S1] od
– τ [if (E) then S1 else S2 fi] = if (E) then C; τ [S1] else C; τ [S2] fi

Actually, we can optimize the above translation by inserting control code only
after statements that read or write a shared variable, or calls to a function.

Next, we insert “assume(F);” before each return statement of the functions
threadi for i = 1, . . . , n; this prevents threadi from returning to main after
executing to completion. Finally, we insert “goal :=T;” right before the statement
labeled with the target program counter pc.

The general behavior of Eagerk(P ,pc) is as follows.

Reducing Context-Bounded Concurrent Reachability 487

Procedure main works as a driver program that calls each component program
Pi in turn at most once. After checking that t0, . . . , tn all contains valid indices
of component programs (i.e., 1 ≤ ti ≤ n holds for each ti), for each component
program Pi, i = 1, . . . , n, control variables t and cx are assigned respectively
with the current component index (i.e., i) and the first context at which the
current component is active if any (according to the scheduling of components
given by t0, . . . , tn). If there is no such context, the next component program
is processed. Otherwise, the shared variables are consistently assigned with the
initial values (given by init, if the current context is the first one, or by gcx

otherwise), and threade
i is called.

Once called, a component program must run through all the contexts in which
it is active and report if the target pc is reached by setting goal to true. This is
ensured by the control code inserted in each function.

Unless the variable terminate holds true, after each step of the original pro-
gram, it is possible (nondeterministically) to call the function contextSwitch. In
each such call, the computation proceeds by trying to make a context-switch.
In case there are no more contexts in which the current program is active, the
function sets terminate to true and returns. Otherwise, the shared variables are
assigned with the guessed values for the next context where the current program
is active and contextSwitch returns.

Observe that the if-statements checking the value of terminate in the control
code ensure that in case terminate is set to true in contextSwitch, the control
returns from all the calls stored in the call stack up to the main function. Since
terminate is set to true only when there are no more contexts to run for the
current component program, it is correct to interrupt the execution of the current
component program and return to main so that the next component program (if
any) can be executed.

Also, observe that the added “assume(F);” statement halts any computation
that would have reached a return statement in each function threade

i . Therefore,
a call to any threade

i returns if and only if all the contexts in which Pi is active
have been successfully executed (i.e., terminate is set to true).

When all programs have successfully terminated we check the variable goal,
and if it holds true, then the label Target is reached, else the program
halts.

Note that if the guessed tuples g1, . . . , gk and t0, . . . , tk do not correspond to
an actual computation of P then there will be at least one component program
Pi, with 1 ≤ i ≤ n, that cannot match the sequence g1, . . . , gk and thus the call
to threade

i will not return.
From the above arguments, we conclude that a program counter pc is reachable

within k context-switches in a computation of P if and only if Target in main is
reachable in a computation of Eagerk(P ,pc). Therefore,

Theorem 1. Given an integer k ≥ 0, a concurrent program P and a program
counter pc, pc is reachable in P within at most k context-switches if and only if
Target is reachable in Eagerk(P,pc).

488 S. La Torre, P. Madhusudan, and G. Parlato

5 Translation Scheme: The Lazy Approach

We now detail the description of the translation of a concurrent programP under
a context-switching bound k to a sequential program using the lazy approach
(denoted Lazyk(P)), and argue its correctness.

The structure of Lazyk(P) is similar to that of Eagerk(P,pc). We keep all the
variables we used earlier except for t and goal which are not needed here. Also,
besides variable cx , we need a second global variable, ic, to store a context num-
ber (from 1 to k). Recall that for each context c we need to run the component
program Pi that is active in c through all the contexts c′ in which Pi was active,
from the first context through context c. We use cx to store the context c and
ic to keep track of the context c′ in the above computation.

In Lazyk(P) each function P of P is translated to a function P l which is
similar P e in Section 4, except that here we do not need to set the global variable
goal when the target program counter is reached. The remaining functions are
main and contextSwitch, which are significantly different from those described in
Section 4, and are given in Figure 4.

For each context cx, function main iteratively: (1) chooses the component
program Pi which is active in context cx, (2) determines the first context ic in
which Pi is active starting from context 0 through context cx, (3) assigns the
shared variables consistent with ic (i.e., if ic = 0 then the shared variables are
assigned by function init, otherwise they are assigned with the values they have
at the context-switch ic), and (4) calls function threadl

i.
In main, the call to function threadl

i executes the component program P l
i

through all the contexts in which it is active, from the first one up to cx. In fact,

Let g: shared variables of P; Let g1, . . . , gk: be k copies of g
decl int cx , ic, t0, . . . , tk; decl bool terminate;

void main()

begin

cx := 0;
while(cx ≤ k) do

assume(1 ≤ tcx ≤ n);
ic := firstContext (tcx , t0, . . . , tcx);
if (ic = 0) then

init();
else

g := gic;

fi

terminate := F;

call threadl
tcx

();
cx := cx + 1;

od

end

void contextSwitch()
begin

if (ic = cx) then

terminate := T;

if (cx < k) then gcx+1 := g; fi

else

if (g = gic+1) then

ic := nextContext (ic, tic , t0, . . . , tcx);
g := gic;

fi

fi

end

Fig. 4. Functions main and contextSwitch of the program Lazyk(P)

Reducing Context-Bounded Concurrent Reachability 489

when threadl
i is called the computation of P l

i starts at the beginning of context
ic (which is set to the first context where P l

i is active). After any step of P l
i , it

is possible to call contextSwitch (terminate is set to false before calling threadl
i

in function main) and then perform a context-switch if possible.
In function contextSwitch, if ic < cx, we check if it is possible to perform

a context-switch by determining if the current value of the shared variables
matches the stored value for the next context-switch. If so, the next context c
in which Pi is active is computed and the shared variables are assigned with the
value at the beginning of context c (i.e., with gc). Observe that since we know
that Pi is active in cx, there will always be such a context c.

From the last observation, we also have that if ic < cx does not hold then
ic = cx must hold. Thus, in the remaining case, i.e. ic = cx, it is possible to
make a context-switch at any point. This is correct, since we are executing Pi in
context cx, which is newly added before making this call to threadl

i in main, and
thus we have no requirements to match. When context-switching in this case,
we only need to store the values of the shared variables in gcx+1 (if we are not
yet in the last context k) and flag that this call to threadl

i has terminated by
setting terminate to true.

From the above observations, any computation π of P can be executed step-
by-step by program Lazyk(P), and thus if π visits a program counter pc, the
corresponding computation of Lazyk(P) will also visit pc.

Now consider any computation π of Lazyk(P) which successfully terminates
(i.e., the return statement of function main is reached). Recall that by construc-
tion each function threadl

i has a statement “assume(F)” guarding each return
statement from the original function threadi. Thus, as in the case of the eager
approach construction, the only way for a call to threadl

i to return is by setting
the variable terminate to true.

From all the above observations, all calls to each threadl
i made from main

return if and only if the computed sequence g1, . . . , gk is matched by a compu-
tation of P. Therefore, for each computation π of Lazyk(P) which successfully
terminates and which visits a program counter pc of P there is a corresponding
computation π′ of P which visits pc. Hence,

Theorem 2. Given an integer k ≥ 0, a concurrent program P and a program
counter pc, pc is reachable in P within at most k context-switches if and only if
pc is reachable in Lazyk(P).

6 Experiments

Boolean programs. Boolean programs are programs where the data-domain is
only Boolean. Since the data-domain is finite, Boolean programs can be subject
to decidable model-checking for analyzing reachability. In particular, it is well
known that sequential Boolean programs have a decidable reachability problem,
and that for concurrent Boolean programs, reachability is undecidable (due to
multiple stacks). However, it has also been shown that reachability problem for
concurrent Boolean programs under a context-switching bound is decidable.

490 S. La Torre, P. Madhusudan, and G. Parlato

Context 1-adder, 1-stopper 2-adders, 1-stopper 1-adder, 2-stoppers 2-adders, 2-stoppers

switches Eager Lazy Eager Lazy Eager Lazy Eager Lazy

1 N 0.1 0.1 N 0.2 0.1 N 0.1 0.1 N 0.2 0.1
2 N 0.3 0.2 N 0.9 0.8 N 0.7 0.9 N 1.6 2.0
3 N 43.3 1.4 N 135.9 6.3 Y 70.1 0.4 Y 177.6 0.8
4 N 73.6 5.5 Y 1601.0 2.6 Y 597.2 2.9 Y out of mem. 7.5
5 N 930.0 20.2 Y - 18.0 Y - 14.0 Y out of mem. 66.5
6 N - 66.8 Y - 122.9 Y - 66.1 Y out of mem. 535.9

Fig. 5. Experimental results on the Bluetooth driver example. Times are expressed
in seconds, “-” denotes timeout in 30 minutes and Y/N denote if the target is
reachable.

Translation for Boolean programs. We have implemented both the eager
and lazy translations described in the previous sections for Boolean programs,
in order to reduce the reachability of concurrent Boolean programs under a
context-switching bound to the (decidable) problem of sequential Boolean pro-
gram reachability. We then subject the sequential program to the reachability
model-checker Moped [2]. Our goal is to show the applicability of the transla-
tions, and in showing that, the lazy translation can outperform the eager one;
we show this on a class of Bluetooth driver examples.

Context permutation 16-bits
switches Eager Lazy

1 N 6.97 0.1
2 N 194.7 1.0
3 N out of mem. 122.5

Table 1. Experiments of
permutation program with
16 bits. Times are expressed
in seconds

The first concurrent program we consider illus-
trates the difference between the eager and the lazy
analysis; we consider the permutation example with
16-bits (a four-bit version of this program is shown
in Figure 1). Initially, only thread1 can evolve as
thread2 is blocked on its first statement. thread1

sets all 16-bits to false and, before returning, sets
test to true. Now, thread2 can take over and goes
into an infinite loop in which the bits are shuffled
producing sooner or later all permutations of the
16-bits. Since all the bits are set to false, only one permutation of the 16-bits
is possible in the execution. The table with the experiments for permutation is
reported in Table 1. As it is evident, the eager version simply fails after a few
context-switches. In the eager approach all the global variables are guessed at
the beginning and all the threads are executed on the guesses. Therefore this
does not prevent thread2 to work on arbitrary values of x1, . . . , x16 and hence
ends up exploring a large and complex state-space (storing all permutations re-
quires large BDDs). The lazy version on the other hand only considers reachable
states and hence works well on this example.

The second set of experiments is related to a concurrent boolean program
modeling a Windows NT Bluetooth driver [11]. Figure 5 depicts the experimental
results. This driver has two types of threads: stoppers and adders. A stopper
calls a stopping procedure to halt the driver, while an adder calls a procedure
to perform I/O in the driver. The I/O is successfully handled if the driver is not
stopped, and an error state is reached otherwise. The pending I/O requests to

Reducing Context-Bounded Concurrent Reachability 491

the driver are maintained in a counter which is modeled with five bits in our
Boolean model of the program.

We have considered four different configurations, by considering one or two
adders, and one or two stoppers. We translated the corresponding concurrent
programs both with the lazy and eager version of our translator allowing up to
six context-switches, and run Moped on them. As from Figure 5, the lazy scheme
performs a lot better than the eager one, and the performance gap between them
increases with the increase in the number of context-switches.

7 Future Directions

There are two interesting future directions we see. One is to see whether using the
lazy translation scheme presented here in the context of deductive verification of
concurrent C programs as done in [5] leads to more efficient analysis. Second, it
would be interesting to see whether the scheme proposed here can be extended to
more general concurrent programs with dynamic and unbounded thread creation.

References

1. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

2. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

3. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

4. La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using a
fixed-point calculus. In: PLDI (2009)

5. Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and Precise Detection of Concur-
rency Errors in Systems Code using SMT solvers. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

6. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
37–51. Springer, Heidelberg (2008)

7. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent
programs under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

8. Musuvathi, M., Qadeer, S.: Chess: Systematic stress testing of concurrent soft-
ware. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 15–16. Springer,
Heidelberg (2007)

9. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455. ACM, New York (2007)

10. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

492 S. La Torre, P. Madhusudan, and G. Parlato

11. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI, pp. 14–24. ACM,
New York (2004)

12. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

13. Suwimonteerabuth, D., Esparza, J., Schwoon, S.: Symbolic context-bounded anal-
ysis of multithreaded java programs. In: Havelund, K., Majumdar, R., Palsberg, J.
(eds.) SPIN 2008. LNCS, vol. 5156, pp. 270–287. Springer, Heidelberg (2008)

	Reducing Context-Bounded Concurrent Reachability to Sequential Reachability
	Introduction
	From Concurrent to Sequential Programs
	Concurrent Programs
	Translation Scheme: The Eager Approach
	Translation Scheme: The Lazy Approach
	Experiments
	Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

